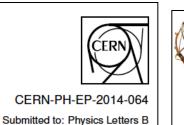


Studies using final states with boosted *bb* resonances in ATLAS

Nikos Konstantinidis (University College London)

HEP2014, Naxos, 09/04/14


Motivation for high-p_T $b\overline{b}$ resonances \Box

- BR(H₁₂₅→bb)=57% and yet it has not yet been conclusively observed nor thoroughly studied
 One of the top objectives for LHC's Run-2
- Cutting at higher-p_T gives better signal-to-background
 bkg is predominantly gluon→bb and has softer p_T spectrum
- 1/3 of higgs-pair production events give bbbb (0.57²)
- In non-resonant Higgs-pair production at 14TeV, the Higgs $p_{\rm T}$ spectrum peaks at ~150GeV
 - Nearly 1/4 of events have both Higgs bosons with pT>200GeV
- Numerous BSM scenarios with TeV-scale resonances decaying as X→hh

This talk

UCL

ATLAS NOTE ATLAS-CONF-2014-005

March 4, 2014

Measurement of the cross section of high transverse momentum $Z \rightarrow b\bar{b}$ production in proton–proton collisions at $\sqrt{s} = 8$ TeV with the ATLAS Detector

The ATLAS Collaboration

Abstract

This Letter reports the observation of a high transverse momentum $Z \rightarrow b\overline{b}$ signal in proton–proton collisions at $\sqrt{s} = 8$ TeV and the measurement of its production cross section. The data analysed were collected in 2012 with the ATLAS detector at the LHC and correspond to an integrated luminosity of $19.5 \, \text{fb}^{-1}$. The $Z \rightarrow b\overline{b}$ decay is reconstructed from a pair of *b*-tagged jets, clustered with the anti- k_r jet algorithm with R = 0.4, that have low angular separation and form a dijet with $p_T > 200 \,\text{GeV}$. The signal yield is extracted from a fit to the dijet invariant mass distribution, with the dominant, multijet background mass shape estimated by employing a fully data-driven technique that reduces the dependence of the analysis on simulation. The fiducial cross section is determined to be

 $\sigma_{Z \to b\bar{b}}^{\text{fid}} = 2.02 \pm 0.20 \text{ (stat.)} \pm 0.25 \text{ (syst.)} \pm 0.06 \text{ (lumi.)} \text{ pb} = 2.02 \pm 0.33 \text{ pb},$

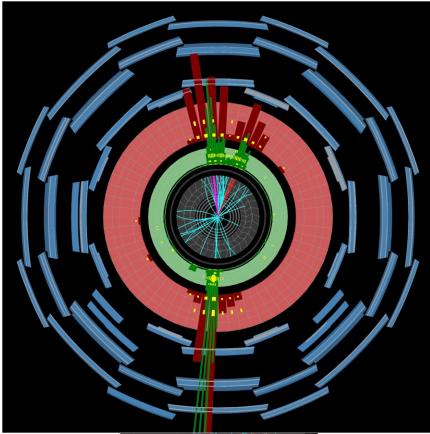
in good agreement with next-to-leading-order theoretical predictions.

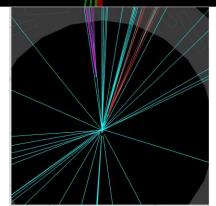
A search for resonant Higgs-pair production in the $b\bar{b}b\bar{b}$ final state in *pp* collisions at $\sqrt{s} = 8$ TeV

The ATLAS Collaboration

Abstract

A search for TeV-scale resonances decaying via a pair of Higgs bosons to the $b\bar{b}b\bar{b}$ final state is performed using 19.5 fb⁻¹ of proton-proton collision data at $\sqrt{s} = 8$ TeV recorded by ATLAS in 2012. The search assumes a Standard Model Higgs boson with a mass of 125 GeV. The decay of each Higgs boson is reconstructed from a pair of *b*-tagged jets that have small angular separation and form a dijet system with transverse momentum greater than 200 GeV. The bulk Randall-Sundrum model with a warped extra dimension and a coupling of $k/\bar{M}_{Pl} = 1.0$ is used as a benchmark to search for resonances, corresponding to the first Kaluza-Klein excitation mode of the graviton G^* , in the range between 500 GeV and 1500 GeV. No evidence of a signal is found, and upper limits on $\sigma(pp \rightarrow G^*) \times BR(G^* \rightarrow HH \rightarrow b\bar{b}b\bar{b})$ are derived, giving an observed limit of 7 fb at the 95% confidence level for a KK graviton mass of 1 TeV. The benchmark model is excluded at the 95% confidence level for KK graviton masses between 590 GeV and 710 GeV.


Nikos Konstantinidis



Observation/measurement of high- $p_T Z \rightarrow bb$

- First observation of high-p_T
 Z→bb in all-hadronic final state
 - Using 2012 ATLAS data
- Validates reconstruction and analysis tools for H→bb
- Test bench for improving analysis techniques for H→bb

 – E.g. m_{bb} resolution
- Validates b-jet energy scale
- Test NLO + parton shower generators, like POWHEG and aMC@NLO, in hadronic resonance decays

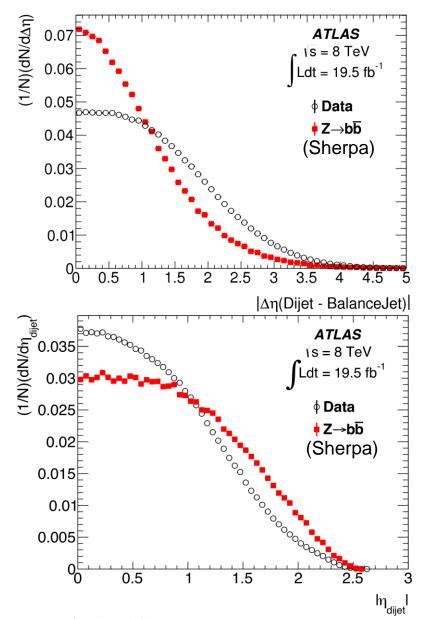
Nikos Konstantinidis

Z→bb preselection

$Z \rightarrow bb$ candidate preselection:

-Trigger: 6 jet triggers with online b-tagging - Trigger efficiency ~90%

- 2 b-tagged anti-k_t R=0.4 jets, - $|\eta|$ <2.5, p_T>40GeV
- $\Delta R(jet1, jet2) < 1.2$, dijet pT>200GeV

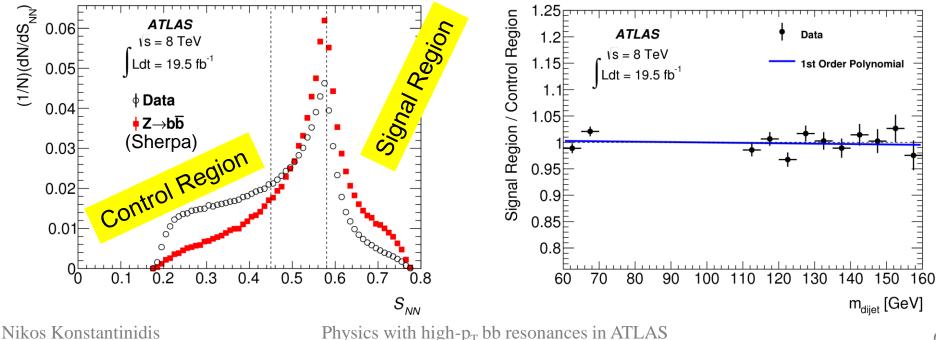

Bkg dominated by QCD multijets (gluon→bb)

Data-driven m_{dijet} modelling of QCD:

- 2 variables uncorrelated with m_{dijet}:
 - $-\Delta\eta$ (dijet, balancing jet)

 $-\eta_{\text{dijet}}$

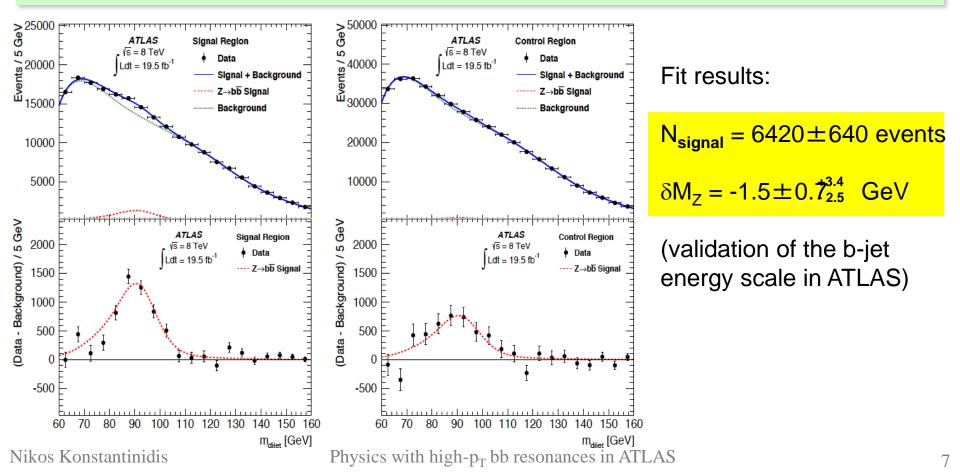
Combine in an MVA and use it to define
a "signal-depleted" Control Region (CR)
a "signal-enhanced" Signal Region (SR)



$Z \rightarrow bb$ selection and bkg modelling

Signal modelling of η_{dijet} , $\Delta \eta(dijet, balancing jet)$ and S_{NN} tested in $Z \rightarrow \mu \mu$ sample in data and Sherpa

SR/CR ratio flat in m_{dijet} (tested also in multijet MC)


s/b~6% in SR, ~2% in CR

$Z \rightarrow bb$ signal extraction

Signal extracted by extended max-likelihood fit to the SR and CR simultaneously:

- QCD shape: 7th degree Bernstein polynomial, identical in SR and CR
- Signal shape (Sherpa): modelled by three Gaussians (Pythia-8 for systematics)
 Free params: N_{signal} in SR and mean of narrowest Gaussian
- top bkg, W+jets and $Z\rightarrow$ cc (all very small) modelled using Monte Carlo

$Z \rightarrow bb$ results and theory predictions

Source of uncertainty	$\Delta N_{Z \to b\overline{b}}(\%)$	$\Delta C_{Z \to b\overline{b}}(\%)$	$\Delta \sigma_{Z \to b\overline{b}}^{\text{fid}}(\%)$
Jet energy scale	+3.0/ - 1.5	± 8.4	+6.5/ - 5.0
Jet energy resolution	±5.3	±0.2	±5.1
b-tagging	±0.1	±3.6	±3.6
Trigger modelling	N/A	±6	±6
Control Region bias	+4.9/ - 5.5	N/A	+4.9/ - 5.5
Signal S_{NN} modelling	±0.9	∓2.0	±2.9
Signal m _{dijet} shape	±2.2	N/A	±2.2
$Z \rightarrow c\overline{c}$ normalisation	±0.4	N/A	±0.4
tt normalisation	±1.2	N/A	±1.1
$W \rightarrow q \overline{q}'$ normalisation	±1.0	N/A	±1.0

$Z \rightarrow bb$ results and theory predictions

Source of uncertainty	$\Delta N_{Z \to b\overline{b}}(\%)$	$\Delta C_{Z \to b\overline{b}}(\%)$	$\Delta \sigma_{Z \to b\overline{b}}^{\text{fid}}(\%)$
Jet energy scale	+3.0/ - 1.5	± 8.4	+6.5/ - 5.0
Jet energy resolution	±5.3	±0.2	±5.1
<i>b</i> -tagging	±0.1	±3.6	±3.6
Trigger modelling	N/A	±6	±6
Control Region bias	+4.9/ - 5.5	N/A	+4.9/ - 5.5
Signal S_{NN} modelling	±0.9	∓2.0	±2.9
Signal <i>m</i> _{dijet} shape	± 2.2	N/A	± 2.2
$Z \rightarrow c\overline{c}$ normalisation	±0.4	N/A	±0.4
<i>tt</i> normalisation	±1.2	N/A	±1.1
$W \rightarrow q \overline{q}'$ normalisation	±1.0	N/A	±1.0

Result:

Systematic uncertainties

 $\sigma_{Z \to b\bar{b}}^{\text{fid}} = 2.02 \pm 0.20 \text{ (stat.)} \pm 0.25 \text{ (syst.)} \pm 0.06 \text{ (lumi.)} \text{ pb} = 2.02 \pm 0.33 \text{ pb}$

$$\begin{array}{ll} \text{POWHEG}: & \sigma_{Z \to b\overline{b}}^{\text{fid}} = 2.02 \begin{array}{c} {}^{+0.25}_{-0.19}(\text{scales}) \begin{array}{c} {}^{+0.03}_{-0.04}(\text{PDF}) \, \text{pb} \end{array}$$

aMC@NLO: & $\sigma_{Z \to b\overline{b}}^{\text{fid}} = 1.98 \begin{array}{c} {}^{+0.16}_{-0.08}(\text{scales}) \pm 0.03(\text{PDF}) \, \text{pb} \end{array}$

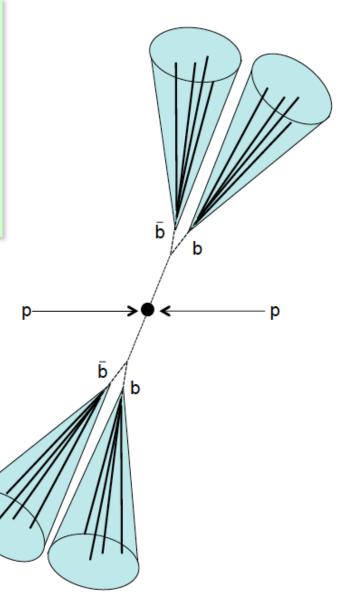
Nikos Konstantinidis

Dredictions

Search for TeV-scale $X \rightarrow HH \rightarrow bbbb$

$X \rightarrow HH \rightarrow bbbb$ candidate preselection:

-Trigger: 5 jet triggers with online b-tagging (~as Z→bb) - Trigger efficiency >99.5%

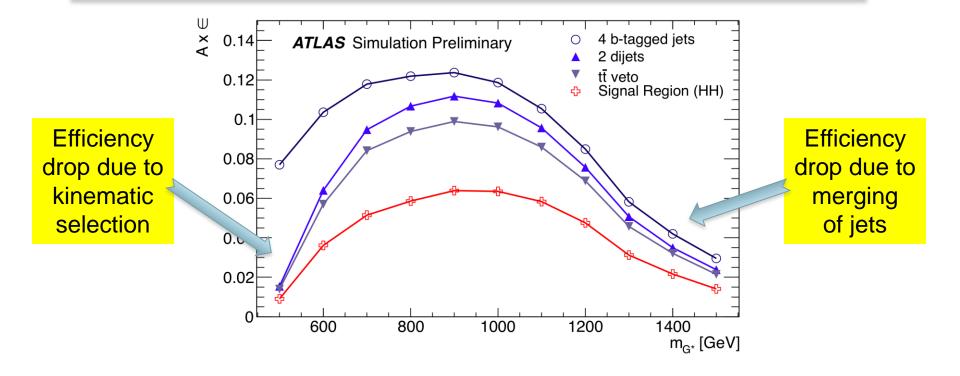

- 4 b-tagged anti-k, R=0.4 jets with $|\eta|$ <2.5, p_T>40GeV
- Two dijets with $\Delta R(jet, jet) < 1.5$, pT>200GeV

In addition:

- ttbar veto:
$$X_{tt} = \sqrt{\left(\frac{m_W - 80.4}{0.1m_W}\right)^2 + \left(\frac{m_t - 172.5}{0.1m_t}\right)^2} > 3.2$$

HH signal region:
$$X_{HH} = \sqrt{\left(\frac{m_1 - 124}{0.1m_1}\right)^2 + \left(\frac{m_2 - 115}{0.1m_2}\right)^2} < 1.6$$

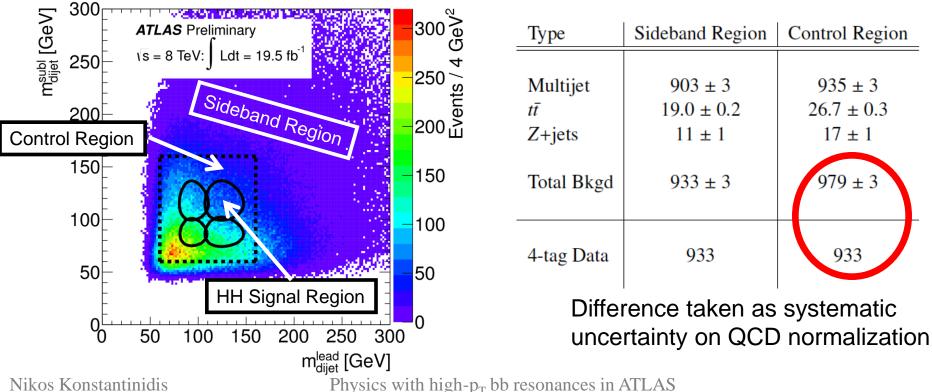
Background: QCD multijets (~90%) and tt (~10%)



Nikos Konstantinidis

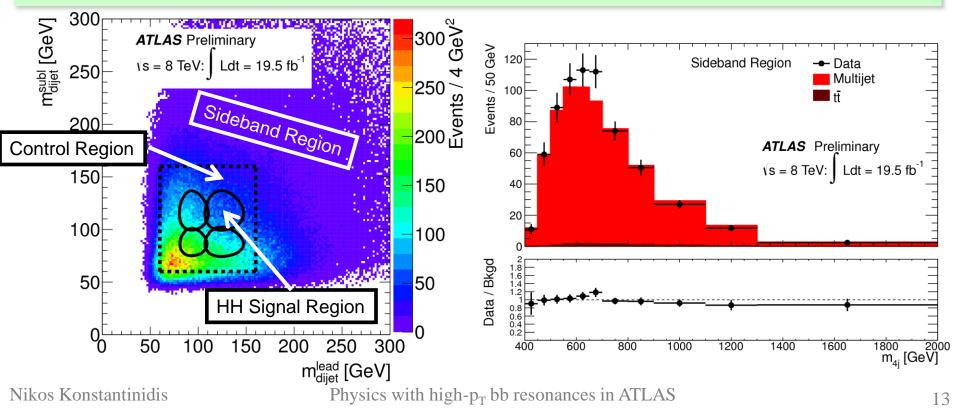
Signal Model for $X \rightarrow HH \rightarrow bbbb$

Used the Randal-Sundrum graviton G* (spin=2)


- BR(G*→HH) ~7%
- Coupling k/mPl = 1.0 (as in $G^* \rightarrow ZZ/WW \rightarrow IIqq/Ivqq$ searches in ATLAS)
- Decay width smaller than detector resolution

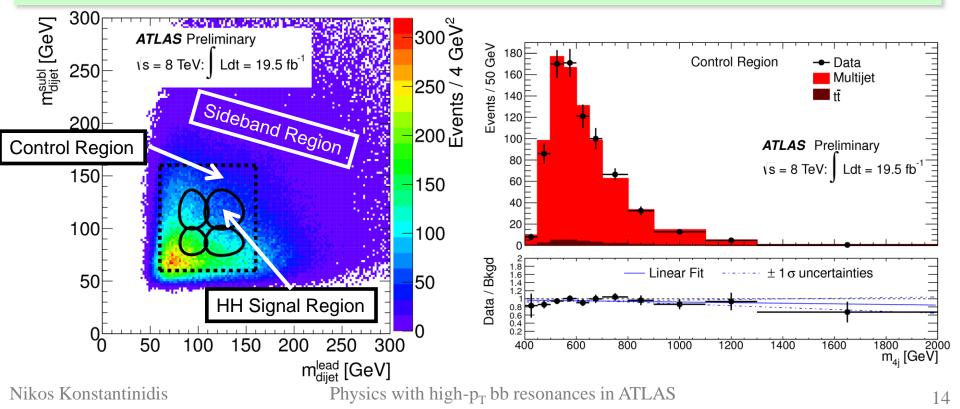
\land X \rightarrow HH \rightarrow bbbb background modeling \triangleq UCL

Data-driven estimation of QCD bkg:

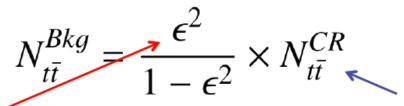

- Use events where only one of the two dijets is required to be b-tagged (2-tag model)
- "2-tag to 4-tag" normalization in HH signal region from corresponding normalization in sideband region

\land X \rightarrow HH \rightarrow bbbb background modeling \triangleq UCL

Data-driven estimation of QCD bkg:


- Use events where only one of the two dijets is required to be b-tagged (2-tag model)
- "2-tag to 4-tag" normalization in HH signal region from corresponding normalization in sideband region
- m4j shape: from 2-tag model in HH signal region, after correcting for kinematic biases due to additional b-tagging in 4-tag selection

\land X \rightarrow HH \rightarrow bbbb background modeling \triangleq UCL


Data-driven estimation of QCD bkg:

- Use events where only one of the two dijets is required to be b-tagged (2-tag model)
- "2-tag to 4-tag" normalization in HH signal region from corresponding normalization in sideband region
- m4j shape: from 2-tag model in HH signal region, after correcting for kinematic biases due to additional b-tagging in 4-tag selection

Data-driven ttbar background estimate

• ttbar yield in signal region given by:

Per dijet efficiency to pass ttbar veto

 Measured in data using semi-leptonic control region (SLCR).

Tag this side as a boosted

leptonic top decay.

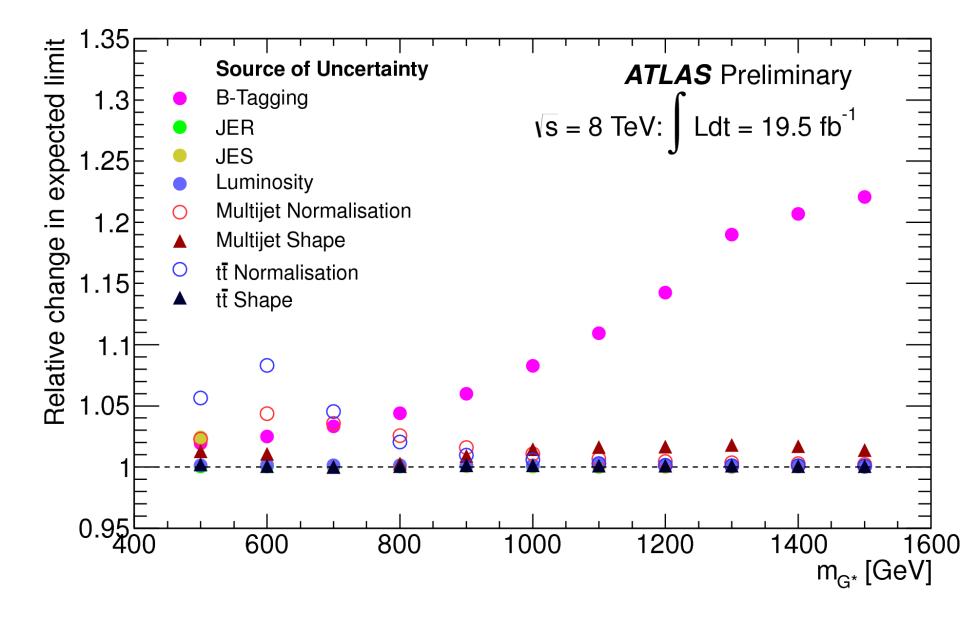
Require dijet candidate and measure *ε* ttbar yield in ttbar Control Region (TTCR)

- ttbar veto requirement reversed
- ttbar yield determined by subtracting multijet contribution.
- Gives 16.0 ± 6.9.

Two assumptions:

- Dijet efficiencies uncorrelated.
- ε in SLCR same as ε in signal region.

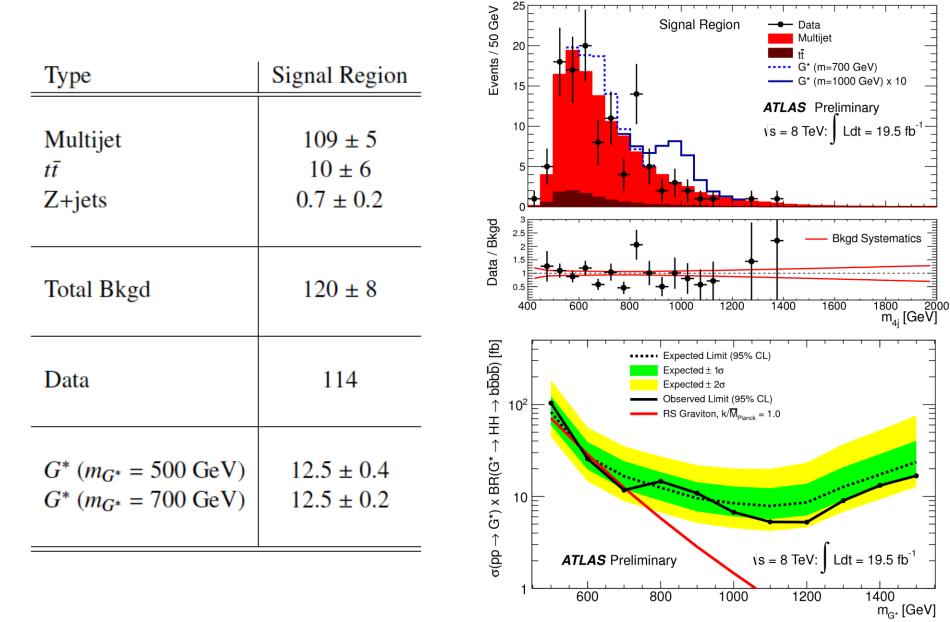
```
Tested in
MC.
Closure to
```

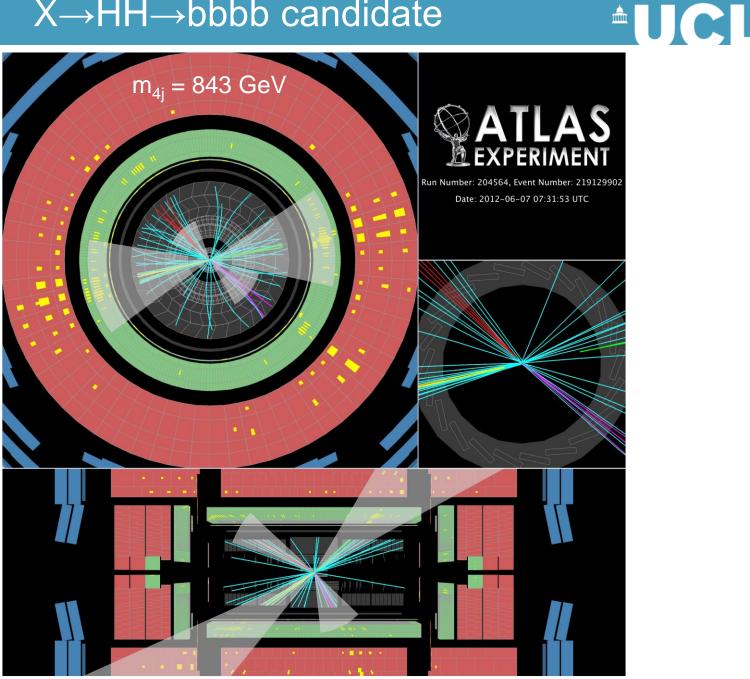

10% level.

- Measure ε = 0.624 ± 0.043 (stat) ± 0.062 (sys.)
- Gives $N_{tt} = 10.2 \pm 6.0$ events (error driven by stat in TTCR)
- cf MC prediction of N_{tt} = 14.3 ± 0.3 events

Nikos Konstantinidis

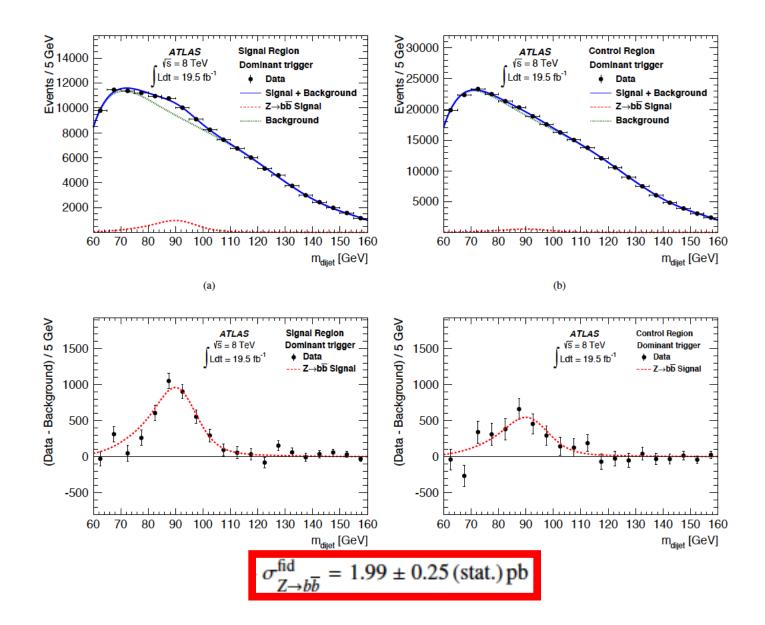
b

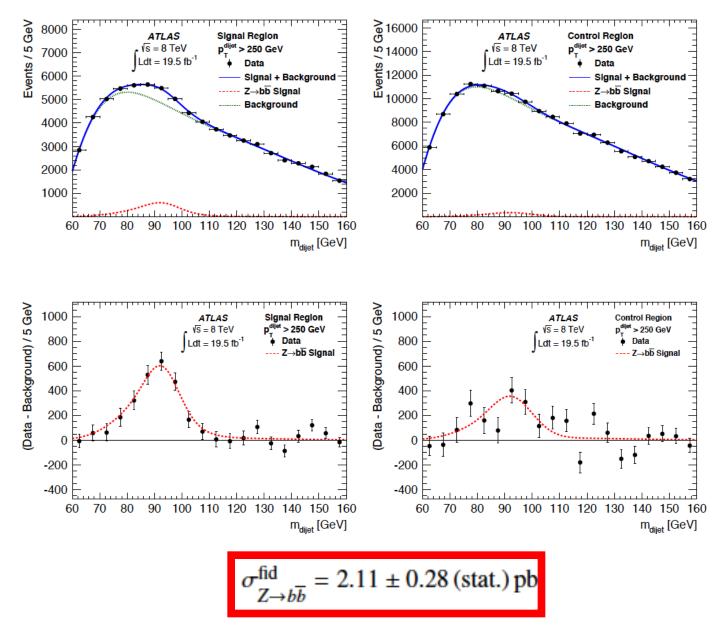

$X \rightarrow HH \rightarrow bbbb$ systematic uncertainties $\Box \Box \Box \Box \Box$


X→HH→bbbb results

X→HH→bbbb candidate

Nikos Konstantinidis

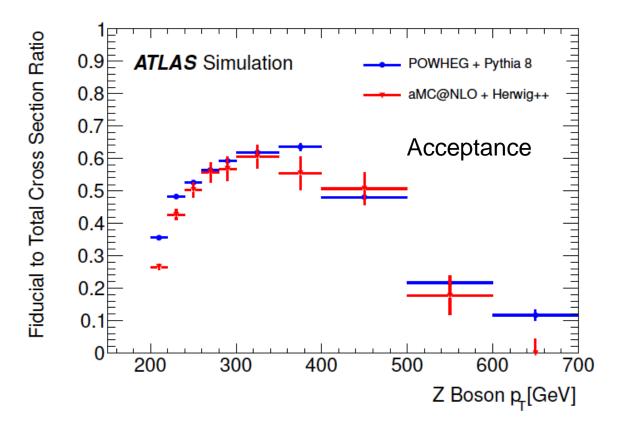

- High-p_T bb resonances lead to interesting topologies and are set to play an increasingly significant role in LHC physics
- □ $\sigma_x BR(X \rightarrow HH \rightarrow bbbb)$ down to ~10fb explored (for $m_X \sim 1 TeV$), but no evidence for any signal found in the range 0.5 TeV < $m_X < 1.5$ TeV
- HH→4b appears to be the most sensitive final state for resonant Higgs-pair production at the LHC
 – Exciting prospects for the future LHC programme


Back up slides

Z→bb cross check: dominant trigger

Physics with high-p_T bb resonances in ATLAS

Z \rightarrow bb cross check: p_T>250GeV

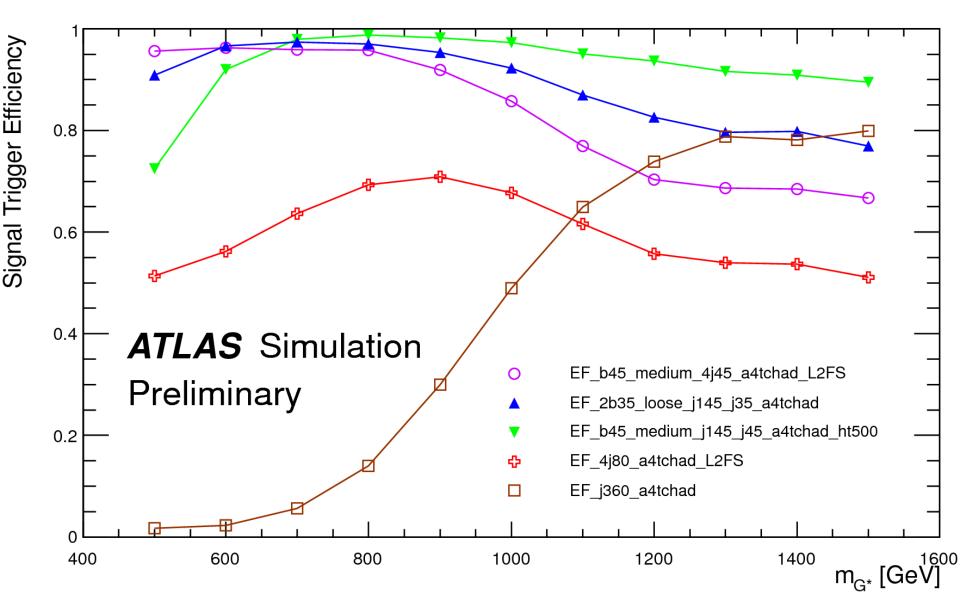


Physics with high-p_T bb resonances in ATLAS

\gg Z \rightarrow bb fiducial cross section & acceptance

Fiducial cross section definition at particle level:

- 2 anti-k, R=0.4 b-jets, with $|\eta|$ <2.5, p_T>40GeV
- $\Delta R(jet1, jet2) < 1.2$, dijet pT>200GeV
- 60 GeV < m_{dijet} < 160 GeV



Physics with high-p_T bb resonances in ATLAS

Nikos Konstantinidis

