Inclusive SUSY searches at CMS

Konstantinos Theofilatos -- ETH Zurich (on behalf of the CMS Collaboration)

HEP 2014, 8-10 May 2014 Island of Naxos, Greece

Supersymmetry (SUSY)

A symmetry of the space-time For each *boson* there is a *fermion* and vice versa

Solves a big problem: fixes the m_H divergences
 MSSM favors a light m_H < 135 GeV
 Higgs boson discovery, paves the way for SUSY ?

E *H*zürich

SUSY as a BSM Model

E *H* zürich

Biggest Problems for SUSY

- Not yet discovered, can't be an exact symmetry (if it was we would have seen selectrons and smuons of 511 keV/105 MeV)
 - Higher is the SUSY breaking scale, hierarchy problem is kind of reintroduced ...
 - Don't have a golden SUSY model to instruct us, not easy to optimize the SUSY search analyses
- The last point, is a common problem for BSM searches

Biggest Problems for SUSY

E *H*zürich

Reality can be complicated

E Hzürich

Kostas Theofilatos

6

09.May.2014

Simplified Models Spectra

Assume a 2 step cascade decay, with 3 unknown masses

A parent particle M₂ is generated (squark/gluino/ewkino) with σ_{SUSY}

■ M₀ is the LSP, and M₁ is an intermediate

SMS allow for a simple way to interpret data; produce crisp results; (*sometimes* tempting to be over-interpreted)

E *H* zürich

 M_0

Generic Search Signature

■Stability of the DM in the universe is likely enforced by a new conservation law* (symmetry) → implies pair production of new particles

Strategy: search for events with some MET, models without stable LSP is another story ...

*e.g. R-parity in SUSY

Jets + MET inclusive search

References SUS-13-012 (19 fb-1 @ 8 TeV) arXiv:1402.4770

https://twiki.cern.ch/twiki/bin/view/CMSPublic/PhysicsResultsSUS

arXiv:1402.4770 / SUS13012

Phase space selected:

 $N_{Lep} = 0, N_{jets} \ge 3,$

H_T> 500 GeV,

MH_T > 200 GeV*

 $\Delta \phi(J_1, MH_T) > 0.5$,

 $\Delta \phi(J_2, MH_T) > 0.5$,

 $\Delta \phi(J_3, MH_T) > 0.3$

* MH_T = like MET, but built with jets of p_T , η restricted acceptance

ETHzürich

arXiv:1402.4770 / SUS13012

Inclusive analysis of **36 search regions**, binned in N_{jets}, H_T, MH_T

Upper limits using the framework of Simplified Models are set

E *H* zürich

CMS , L = 19.5 fb⁻¹, vs = 8 TeV

Squark (gluino) masses below 0.8 (1.2) TeV are not favored in the studied simplified models

arXiv:1402.4770 / SUS13012

Most of the analysis novelty goes in the background estimation

Think about it: How Zvv + jets can be estimated for $N_{jets} \ge 5$ when the best NLO estimation is at parton level and goes only point up to $N_{jets} = 4$?

We need to invent smart datadriven methods

E *H* zürich

Estimating Z(vv) + jets

ETH zürich

Z+jets vs γ + jets

- Different couplings & mass but similar QCD radiation (jets)
- Production cross section ratio R(Z+jets/γ+jets) known within 20%
- Method: Use the R(Z+jets/γ +jets) from theory and the photon's p_T spectrum to predict the MET of Z(vv)+jets

That's just one example among the many data-driven methods that have been developed for the major SM backgrounds

0.18

0.16

0.14

0.12

0.1^L

200

400

600

800

₩_T [GeV]

1000

Searching for SUSY using M_{T2}

References SUS-13-019 (19 fb-1 @ 8 TeV) JHEP 1210 (2012) 018 (4.7 fb-1 @ 7 TeV)

https://twiki.cern.ch/twiki/bin/view/CMSPublic/PhysicsResultsSUS

M_{T2} = A Mass Variable

 M_{T2} is a generalization of the transverse mass M_T for the case of 2 decay chains with 2 unobserved particles

$$\mathbf{M}_{T2}(\mathbf{m}_{c}) = \min_{\vec{p}_{T}^{c(1)} + \vec{p}_{T}^{c(2)} = \vec{p}_{T}^{miss}} \left[\max\left(\mathbf{M}_{T}^{(1)}, \mathbf{M}_{T}^{(2)}\right) \right]$$

If the visible systems (grouped in pseudojets) are correctly chosen and LSP mass m_c is known, MT2 has an endpoint at parent mass

09.May.2014

$$(M_{T})^{2} = M_{vis}^{2} + M_{LSP}^{2} + 2(E_{T}^{vis}E_{T}^{LSP} - \vec{p}_{T}^{vis} \cdot \vec{p}_{T}^{LSP})$$

M_{T2} vs MET

E *H* zürich

When m_{LSP} is set to 0, QCD with high MET is mapped to low M_{T2} values, while the SUSY signal is retained in the M_{T2} (MET) tails

M_{T2} Event Selection

ETH zürich

Phase space selected:

NLep = 0,

$$\begin{split} H_T > 750 ~|| ~(H_T > 450 \&\& MET > 200) \\ N_{jets} \ge 2 ~ with ~pT > 100 ~GeV ~and ~|\eta| < 2.4 \\ \Delta \varphi(Ji, MHT) > 0.3 ~for~i = 1,2,3 ~and~4 \end{split}$$

Events are further binned in terms of MET, H_T , N_{bjets} N_{jets}

Data-driven background estimation of all major processes

Multi Bin Analysis

Inclusive analysis of **27** search regions, binned in N_{jets}, N_{bjets}, H_T, M_{T2}

EHzürich

MT2 Results

CMS Preliminary, 19.5 fb⁻¹, \s = 8 TeV

simplified	limit on parent	best limit on	lower limit on mass
modal	mass at Man = 0	I CD mass	colitting parent I SP
moder	mass at $M_{LSP} = 0$	Lor mass	spinning parent – LSP
direct squark production			
single light squark	$M_{\tilde{a}} < 520 \text{GeV}$	$M_{\rm LSP} < 120 {\rm GeV}$	$\Delta M(\tilde{q}, \tilde{\chi}_1^0) > 200 \text{GeV}$
8 degenerate light squarks	$M_{\tilde{q}} < 875 \text{GeV}$	$M_{\rm LSP} < 325{\rm GeV}$	$\Delta M(\tilde{q}, \tilde{\chi}_1^0) > 50 \mathrm{GeV}$
direct sbottom production	$M_{\rm b} < 640{ m GeV}$	$M_{\rm LSP} < 275{ m GeV}$	$\Delta M(\tilde{b}, \tilde{\chi}_1^0) > 10 \text{GeV}$
direct stop production			
$M_{\rm stop} > M_{\rm top} + M_{\rm LSP}$	$300 < M_{\tilde{t}} < 450 \text{GeV}$	$M_{\rm LSP} < 60 {\rm GeV}$	$\Delta M(\tilde{t}, \tilde{\chi}_1^0) > 230 \mathrm{GeV}$
$M_{\rm stop} < M_{\rm top} + M_{\rm LSP}$	$M_{\tilde{t}} < 175 \text{GeV}$	$M_{\rm LSP} < 60 {\rm GeV}$	$\Delta M(\tilde{t}, \tilde{\chi}_1^0) > 90 \text{GeV}$
direct gluino production			
$\tilde{g} \rightarrow q \bar{q} \tilde{\chi}_1^0$	$M_{\tilde{g}} < 1225 \text{GeV}$	$M_{\rm LSP} < 510 {\rm GeV}$	$\Delta M(\tilde{g}, \tilde{\chi}_1^0) > 25 \text{GeV}$
$\tilde{g} \rightarrow b \bar{b} \tilde{\chi}_1^0$	$M_g < 1300 \text{GeV}$	$M_{\rm LSP} < 740{ m GeV}$	$\Delta M(\tilde{g}, \tilde{\chi}_1^0) > 50 \text{GeV}$
$\tilde{g} \rightarrow t \bar{t} \tilde{\chi}_1^0$	$M_{g} < 1225 \text{GeV}$	$M_{\rm LSP} < 450 {\rm GeV}$	$\Delta M(\tilde{g}, \tilde{\chi}_1^0) > 225 \mathrm{GeV}$
direct gluino production			
$ \begin{array}{c} \tilde{g}_1 \rightarrow q \bar{q} \tilde{\chi}_2^0, \tilde{\chi}_2^0 \rightarrow h^0 \tilde{\chi}_1^0, \\ \tilde{g}_2 \rightarrow q q' \tilde{\chi}_1^\pm, \chi_1^\pm \rightarrow W^\pm \tilde{\chi}_1^0 \end{array} $	$M_{\tilde{g}} < 825{ m GeV}$	$M_{\rm LSP} < 410{ m GeV}$	$\Delta M(\tilde{g},\tilde{\chi}_1^0)>225{\rm GeV}$

Limits are set on simplified models of direct squark/gluino, sbottom/stop pair productions

Searching for SUSY with Razor

References SUS-13-004 (19 fb-1 @ 8 TeV) PRL 111, 081802 (2013) (4.7 fb-1 @ 7 TeV)

https://twiki.cern.ch/twiki/bin/view/CMSPublic/PhysicsResultsSUS

Razor Variables

Principle idea behind: 2 equal mass sparticles are produced near threshold $\gamma_{CM} \approx 1$, scale of the process reflected in momenta of quarks and LSPs

$$\begin{split} M_{\rm R} &\equiv [(|\vec{p}^{j_1}| + |\vec{p}^{j_2}|)^2 - (p_z^{j_1} + p_z^{j_2})^2]^{1/2} \\ M_{\rm T}^R &\equiv \left[\frac{1}{2} \left(E_{\rm T}^{\rm miss}(p_{\rm T}^{j_1} + p_{\rm T}^{j_2}) - \vec{E}_{\rm T}^{\rm miss} \cdot (\vec{p}_{\rm T}^{j_1} + \vec{p}_{\rm T}^{j_2}) \right) \right]^{1/2} \\ R &= \frac{M_T^R}{M_R} \end{split}$$

Razor variables, M_R and R turn a 'tail search' into a 'bump hunt'.

E *H* zürich

Razor 2D search

EHzürich

Search is binned in terms of N_{Lep} , N_{Jets} , N_{bjets} , M_R and R^2 treats together hadronic and leptonic final states

Razor Results

ETH zürich

Excluding gluino (squarks) masses up to 1.3 (0.7) TeV pair produced with simplified models

A brave new attempt -- interpret CMS 7 + 8 TeV results in terms of pMSSM

References SUS-13-020 (19 fb-1 @ 8 TeV) && (4.7 fb-1 @ 7 TeV)

https://twiki.cern.ch/twiki/bin/view/CMSPublic/PhysicsResultsSUS

Phenomenological MSSM

MSSM has 120 parameters, pMSSM is 19-dimension realization of MSSM with no assumption on SUSY breaking mech

- Combines b-physics, Higgs, top, EW observables (CMS, ATLAS, LHCb, Tevatron, Babar, Belle) and various CMS inclusive SUSY searches
- 20M points sample the pMSSM space, Bayesian analysis to obtain posterior probabilities densities for sparticles masses, is performed

Prospects for 2015

Expect a Boost in Sensitivity

E *H* zürich

Summary

Searching for SUSY is not easy

no good driving model that can be used to optimize our analyses is available on the market, the art of searching for everything/anything

On our way to search for SUSY we developed:
novel methods to estimate the SM background
novel methods to interpret the results

Absence of an evidence in Run I should not discourage the effort, still an interesting period is ahead

Backup Slides

Summary of SMS Results

E Hzürich

Several more simplified models have been excluded

