

Search for supersymmetry in the single-lepton final state with the CMS detector

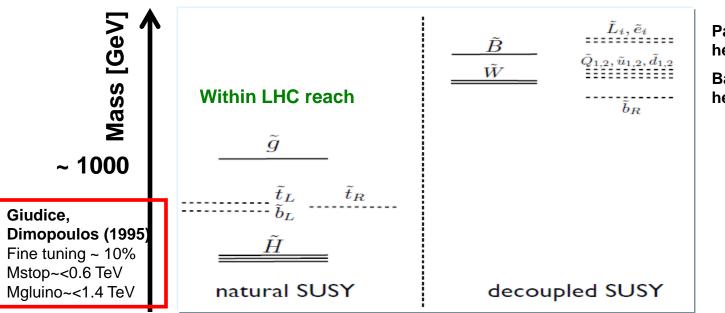
Loukas Gouskos

University of California, Santa Barbara on behalf of the CMS collaboration

Outline:

- Physics motivation
- Single-lepton searches for:
 - Stop production through gluino decays
 - Direct stop production
 - Associated stop Higgs production

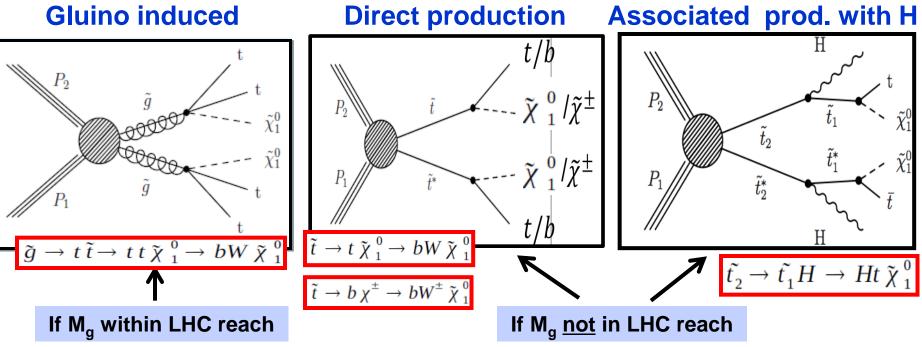
Summary and conclusions



Physics motivation

Physics motivation

- Experimental results @7 TeV show no evidence of SUSY
 - Constrained SUSY models cornered though not excluded yet
- Motivation for SUSY at the EWK scale: naturalness
 - Top/ bottom squarks [3G] and gluino masses at ~TeV scale


Papucci, Ruderman, Weiler hep-ph 1110.6926

Barbieri et al. hep-ph 9512388

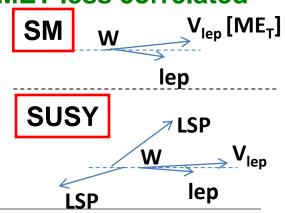
Physics motivation (2)

stop production mechanisms:

 Multiple tops in final state: large BR to leptonic channels

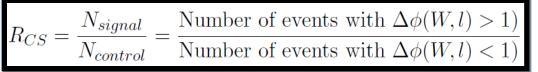
- Ilep: ~40% for indirect production [~30% 0-lep]
- Speak about 1-lep searches: dedicated for stops

Gluino-induced stop search


Dominant bkg:

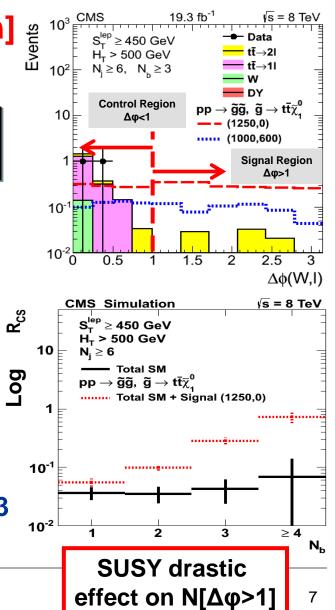
ttbar + jets

Gluino-induced stop search


- Ilep: Largest BR; sensitivity competitive to all hadronic
- Event selection:
 - 1 isolated lepton [e/ µ] ____
 - ♦ N_j≥6 , N_b≥2
- Handles that characterize the event "energy" scale
 - Hadronic sector: H_T = Σp_T[jets]
 - In SUSY events generally harder jets compared to SM
 - Leptonic sector: S_T^{lep} = p_T[lep] + ME_T
 - In SUSY larger values of ME_T : pT[I] and MET less correlated
- Additional kinematic variable:
 - MET and charged lepton less aligned in SUSY events [3 sources of ME_T]
 - Angle between W and charged lepton [Δφ(W,I)] quite powerful

Δφ: Strategy & EWK bkg estimation

- Require Δφ>1 [Δφ<1 control region]</p>
- Define transfer factor R_{cs}:

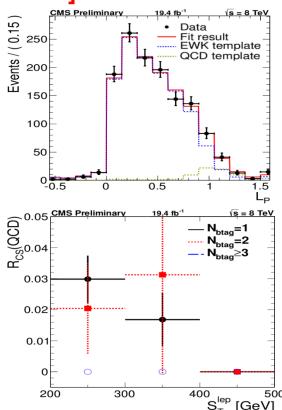


Prediction:

$$N_{\mathit{SM}}^{\mathit{pred}}(\varDelta \phi \! > \! 1) = \! R_{\mathit{CS}} \cdot N_{\mathit{data}}(\varDelta \phi \! < \! 1)$$

- Two possibilities to extract R_{CS}:
 - Use MC; assign large systematic unc.
 - Use a data-driven approach
- R_{cs} dependence on N_b very weak
 - ♦ measure in data in N_b=1, use in N_b=2,≥3
 - k_{cs} [MC] for residual differences

Loukas Gouskos (CMS, UCSB) HSSHEP 2014 - Naxos Single-lepton SUSY searches in CMS


Δφ: QCD Bkg estimation

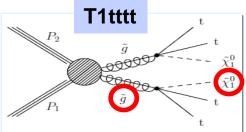
 $\mathcal{L}_{\mathcal{P}} = \frac{\vec{P}_T(l) \cdot \vec{P}_T(W)}{|\vec{P}_T(W)|^2}$

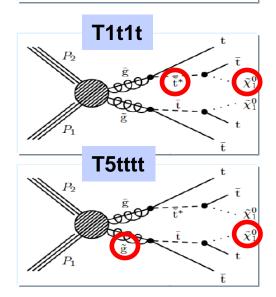
- QCD background small compared to other bkgs
 - negligible in the muon channel
- Estimate QCD contribution using well tested method [PRL (2011) 107:02180, CMS-SUS-11-015, CMS-SUS-12-010]
 - Invert electron id variables and estimate QCD shape from anti-selected data sample
 - Binned likelihood fit in Lp to estimate total QCD
 - EWK template from MC
 - Calculate R_{cs}[QCD] from anti-selected data
- $N_{QCD} < 5\%$ of total data, negl. for $\Delta \phi > 1$
 - subtract contribution in control region
- Prediction in electron channel:

 $N_{SMest.}(\Delta\phi(W,l) > 1) = R_{CS}^{EWK} \cdot (N_{data}(\Delta\phi(W,l) < 1) - N_{QCD}(\Delta\phi(W,l) < 1)$

Loukas Gouskos (CMS, UCSB)

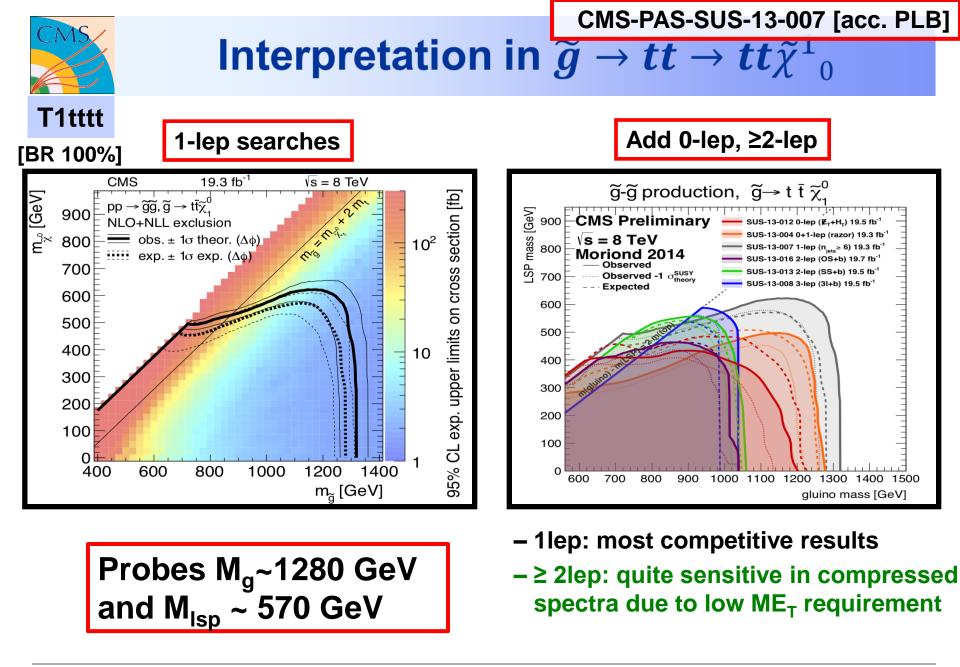
Δφ: Method validation and results


■ All ingredients of the analysis tested in bkg dominated sample [3≤N_j≤5] in data


L=19	9.4 fb ⁻	1	Control sample [3<=N _j <=5]				Results @ 19.4 fb ⁻¹			
			$3 \le N_j \le 5$			$N_j \ge 6$				
			$S_{\rm T}^{\rm lep}$ [GeV]	Control	Pred.	Obs.	Control	Pred.	Obs.	
:	$N_{\rm b} = 2$		[250, 350]	548	34.2 ± 5.4	30	112	$3.8 \pm 1.8 \pm 0.6$	9	
		е	[350, 450]	174	5.1 ± 1.9	8	28	$2.7 \pm 1.9 \pm 0.8$	2	
			>450	61	5.6 ± 2.1	1	9	$0.0 {\pm} 0.4 {\pm} 0.2$	0	
		n	[250, 350]	632	41.9 ± 5.6	59	141	$6.0\pm2.2\pm0.9$	9	
			[350, 450]	188	8.5 ± 2.4	11	24	$1.4{\pm}1.1{\pm}0.4$	2	
			>450	71	2.5 ± 1.3	1	9	$0.0 \pm 0.7 \pm 0.2$	0	
	$N_{\rm b} \ge 3$		[250, 350]	70	3.9 ± 0.9	2	45	$1.9 \pm 0.9 \pm 0.4$	4	
		е	[350, 450]	12	0.3 ± 0.2	2	7	$0.9 {\pm} 0.7 {\pm} 0.4$	0	
			>450	4	0.3 ± 0.2	0	0	$0.0\pm0.1\pm0.03$	0	
			[250, 350]	59	3.9 ± 0.8	5	28	$1.9 \pm 0.8 \pm 0.4$	0	
		Ц	[350, 450]	25	1.1 ± 0.4	0	13	$0.6 \pm 0.5 \pm 0.3$	0	
			>450	7	0.3 ± 0.2	0	2	$0.0 \pm 0.2 \pm 0.1$	0	
Stat. uncertainties only total uncertainty (stat +/- sys								tat +/- sys)		
	Good agreement between prediction and observed data [©]					Observed data agree with SM expectations [⊗]				

Interpretation in $\widetilde{g} \rightarrow tt \rightarrow tt \widetilde{\chi}^{1}_{0}$

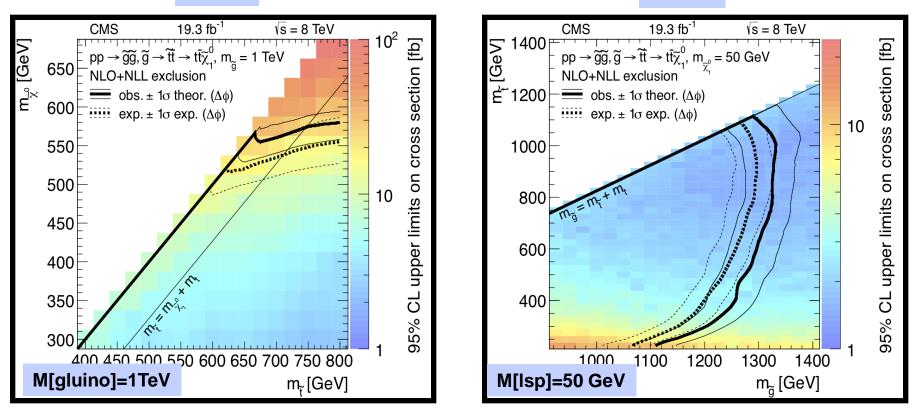
- Limits set for gluino-induced stop production using SMS models:
 - T1tttt [stop off-shell]
 - Free parameters: M(gluino) and M(lsp)
 - top squark M(stop) >> M(gluino)
 - T1t1t [stop on-shell]
 - Free parameters: M(stop) and M(lsp)
 - M(gluino) = 1 TeV [fixed]
 - T5tttt [stop on-shell]
 - Free parameters: M(stop) and M(gluino)
 - M(lsp) = 50 GeV [fixed]



Results:

• Simultaneous fit over all search regions

Loukas Gouskos (CMS, UCSB)



Interpretation in $\widetilde{g} \rightarrow tt \rightarrow tt \widetilde{\chi}^{1}_{0}$

T5tttt

[BR 100%]

T1t1t

Probes light stops

Loukas Gouskos (CMS, UCSB) HSSHEP 2014 - Naxos Single-lepton SUSY searches in CMS

Direct stop search

only used in:

 $\tilde{t} \rightarrow t \, \tilde{\chi}_{1}^{0} \rightarrow bW \, \tilde{\chi}_{1}^{0}$

Direct stop search: selection

Event selection:

- ◆ 1 isolated lepton [e/µ], N_j≥4, N_b≥1
- ME_T>100 GeV [suppress QCD]

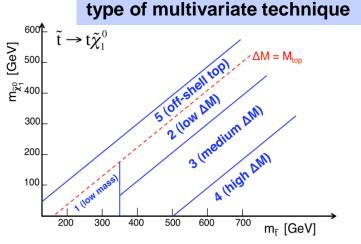
- ♦ M_T(I,ME_T)>120 GeV [suppress tt(1I) & W+jets]
- Veto events with additional isolated track [suppress tt(2l)]
- Additional kinematic variables:
 - M_{T2}^W: generalization of M_{T2} [event with 2 undetected particles]

 $M_{T2}^{W} = \text{minimum} \left\{ m_{y} \text{ consistent with:} \begin{bmatrix} \vec{p}_{1}^{T} + \vec{p}_{2}^{T} = \vec{E}_{T}^{miss}, p_{1}^{2} = 0, (p_{1} + p_{l})^{2} = p_{2}^{2} = M_{W}^{2}, \\ (p_{1} + p_{l} + p_{b_{1}})^{2} = (p_{2} + p_{b_{2}})^{2} = m_{y}^{2} \end{bmatrix} \right\}$

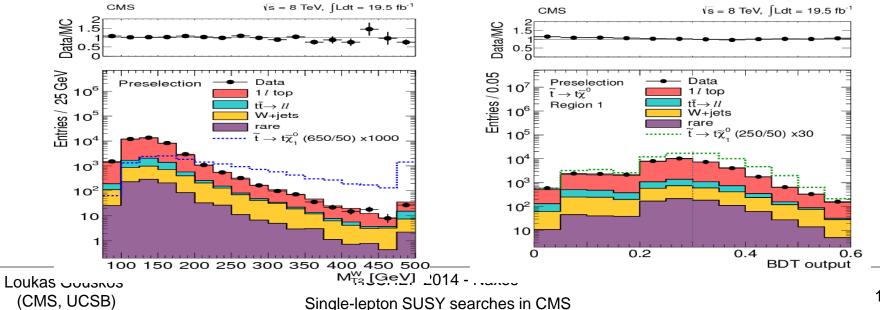
suppress tt(2I) when 2nd lep lost; BKG: low M_{T2}^W; SUSY high

• Hadronic top
$$\chi^2 = \frac{(M_{j_1 j_2 j_3} - M_{top})^2}{\sigma_{j_1 j_2 j_3}^2} + \frac{(M_{j_1 j_2} - M_W)^2}{\sigma_{j_1 j_2}^2}$$

- suppress tt(2lep) by identifying the hadronic top decay
- Additional topological variables:
 - minΔφ[j_{1,2},ME_T] and H_T^{ratio} [fraction of H_T in ME_T-hemisphere]


Loukas Gouskos (CMS, UCSB) HSSHEP 2014 - Naxos Single-lepton SUSY searches in CMS

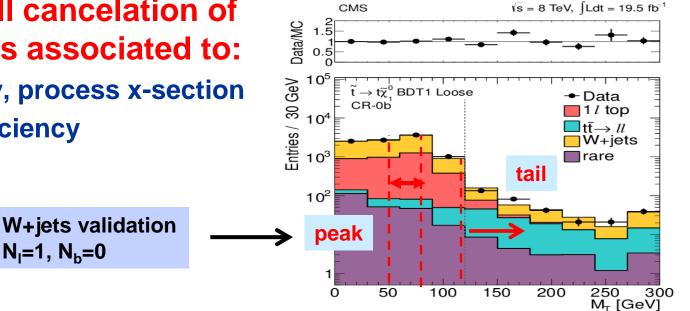
EPJ C (2013) 73:2677


Direct stop search: strategy

- Two search approaches:
- BDT ^(*) [primary approach]
 - BDT inputs [in addition to slide 14]:
 - pT [lead b], ΔR(l,lead b], pT[lep]
 - Separate BDTs based on Δm
- Cut-based [x-check]

(*) Boosted Decision Tree

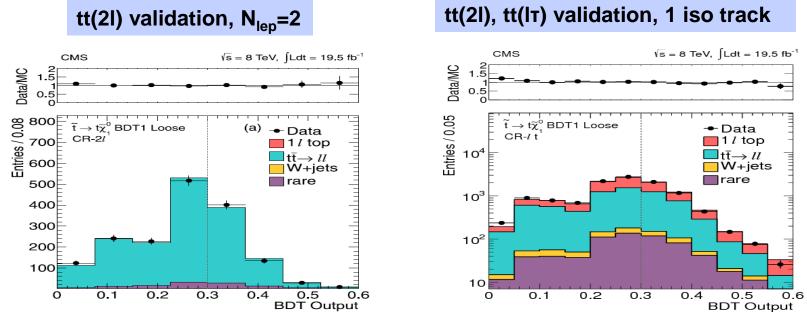
Search in different MET regions; selection for low & high Δm



Direct stop search: BKG estimation

- **BKG shapes from simulation**
- Estimate scale factors from a signal depleted-region using the "peak-to-tail" method:
 - ♦ Normalize MC to data in M_T-peak region [50-80 GeV]
 - Extrapolate results in M_T-tail region [> 120 GeV]
- Partial or full cancelation of uncertainties associated to:
 - Luminosity, process x-section

 $N_{1}=1, N_{b}=0$


- Lepton efficiency
- JES, etc..

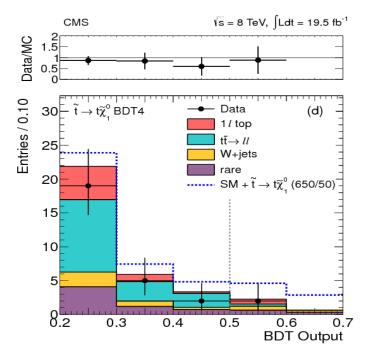
Direct stop search: BKG estimation

- Background estimation methods validated in control regions in data:
 - 3 CRs: tt(2lep), tt(1lep) + tt(2lep), W+jets
 - "rare" bkgs [i.e. multi-V, tV, ..] from MC with large uncertainties

Systematic uncertainties / process derived from these control regions

Loukas Gouskos (CMS, UCSB)

EPJ C (2013) 73:2677



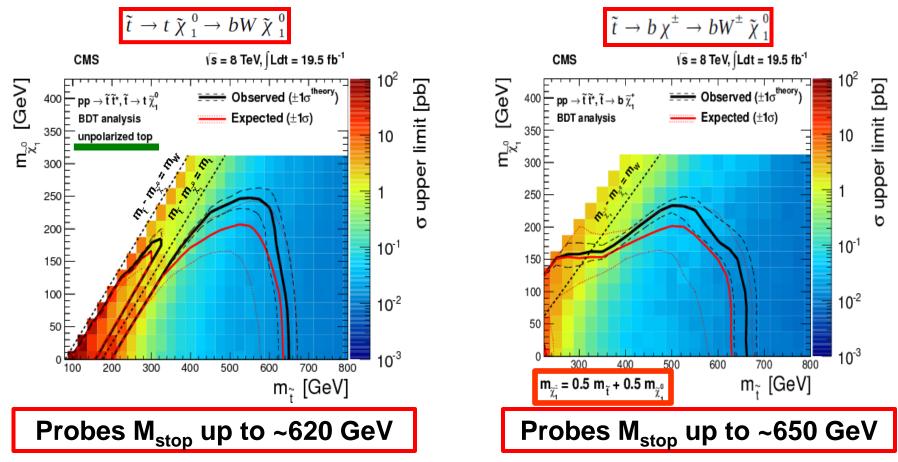
Direct stop search: results

- Search performed in 18 SR [BDT] ; 16 SR [cut-based]
- No statistically significant excess observed

Results @ 19.5 fb⁻¹ [BDT]

$\widetilde{t} \to t \widetilde{\chi}_1^0$						
Sample	BDT1-Loose	BDT1–Tight	BDT2	BDT3	BDT4	BDT5
$t\bar{t} \to \ell \ell$	438 ± 37	68±11	46 ± 10	5 ± 2	0.3 ± 0.3	48 ± 13
1ℓ top	251 ± 93	37 ± 17	22 ± 12	4 ± 3	0.8 ± 0.9	30 ± 12
W + jets	27 ± 7	7 ± 2	6 ± 2	2 ± 1	0.8 ± 0.3	5 ± 2
Rare	47 ± 23	11 ± 6	10 ± 5	3 ± 1	1.0 ± 0.5	4 ± 2
Total	763 ± 102	124 ± 21	85 ± 16	13 ± 4	2.9 ± 1.1	87 ± 18
Data	728	104	56	8	2	76
$\widetilde{t} \rightarrow t \widetilde{\chi}_1^0 \ (250/50)$	285 ± 8.5	50 ± 3.5	28 ± 2.6	4.4 ± 1.0	0.3 ± 0.3	34 ± 2.9
$\widetilde{t} \rightarrow t \widetilde{\chi}_1^0 \ (650/50)$	12 ± 0.2	7.2 ± 0.2	9.8 ± 0.2	6.5 ± 0.2	4.3 ± 0.1	2.9 ± 0.1

• Results for $\tilde{t} \rightarrow b\tilde{\chi}^+$ in back-ups


Loukas Gouskos (CMS, UCSB)

EPJ C (2013) 73:2677

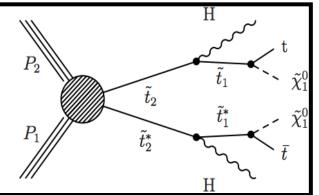
CMS

Direct stop search: interpretation

- Direct stop production → 2 decay modes
- Use signal region with best expected limit

Associated stop – Higgs production

CMS-PAS-SUS-13-021



Direct stop search with H: strategy

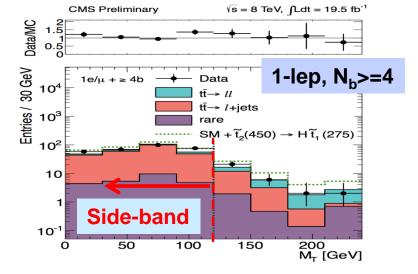
Search for direct stop production in association with H

- Leptonic final state
- ♦ H→bb [large BR]
- Focus on scenarios where:

 $M(\tilde{t}_1)\text{-}M(\tilde{\chi}_1^0){\sim}M(t)$

- Challenging kinematic region [low ME_T]
- Event selection:
 - ◆ 1 isolated lepton [e/µ], N_j≥4 (5), N_b≥4 (3)
 - M_T(I,ME_T)>120 (150) GeV [suppress tt(11) & W+jets]
 - ME_T>50 GeV [W+jets]
 - Veto events with additional isolated track [suppress tt(2l)]
- In addition to 1-lep, a 2-lep search is carried out
 - details not discussed here

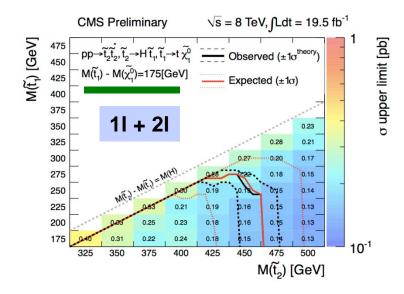
Direct stop search & H: BKG estim.


- Main BKGs [i.e tt(1lep) & tt(2lep)] from side-bands in data and transfer factors from simulation
 - Inversion of M_T cut
- Advantage:

partial or full cancelation of uncertainties associated to:

- Luminosity, process x-section
- Lepton efficiency
- JES, etc..

Control regions in data used to derive scale factors


Direct stop search & H: results

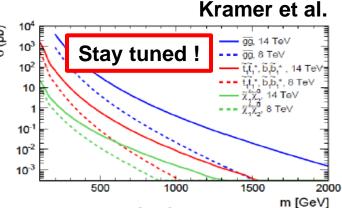
Results for both 1-lep & 2-lep channels

No statistically significant excess

Results @ 19.5 fb⁻¹

Sample	11 + 3b	$1l + \ge 4b$	21 + 3b	$2l + \geq 4b$
$t\bar{t} \rightarrow \ell + jets$	6.1 ± 1.1	13.2 ± 3.2	0.0 ± 0.1	0.1 ± 0.1
$t\bar{t} \rightarrow \ell\ell + jets$	3.2 ± 0.9	10.4 ± 4.3	7.2 ± 2.1	8.8 ± 3.8
Rare	0.8 ± 0.1	3.2 ± 0.8	1.2 ± 0.2	1.7 ± 0.6
Total background prediction	10.0 ± 1.8	26.8 ± 5.6	8.4 ± 2.7	10.6 ± 5.1
Total relative uncertainty [%]	17.5	20.9	31.7	48.2
Data	14	31	15	3

Probes $M_{stop2} \sim 450 \text{ GeV}$ for M_{stop1} ~250 GeV



Summary

Summary

- Naturalness requires light gluinos, stops and sbottoms
 - [probably] within LHC reach
- Several searches [based on lepton multiplicity] for direct & indirect stop/sbottom production in CMS
 - Single-lepton searches provide very competitive results!
- No excess found: limits in m_{gluino}, m_{lsp}, m_{stop} tightened
 M_{gluino} ~<1280 GeV, M_{stop}~< 650 GeV [~10% fine tuning]
- Natural SUSY constrained; still large open param.space
- Upcoming 13 TeV run significant impact on SUSY prod. x-section
 - Largest impact on gluino prod.

CMS SUSY results:

https://twiki.cern.ch/twiki/bin/view/CMSPublic/PhysicsResultsSUS

Loukas Gouskos (CMS, UCSB) HSSHEP 2014 - Naxos Single-lepton SUSY searches in CMS

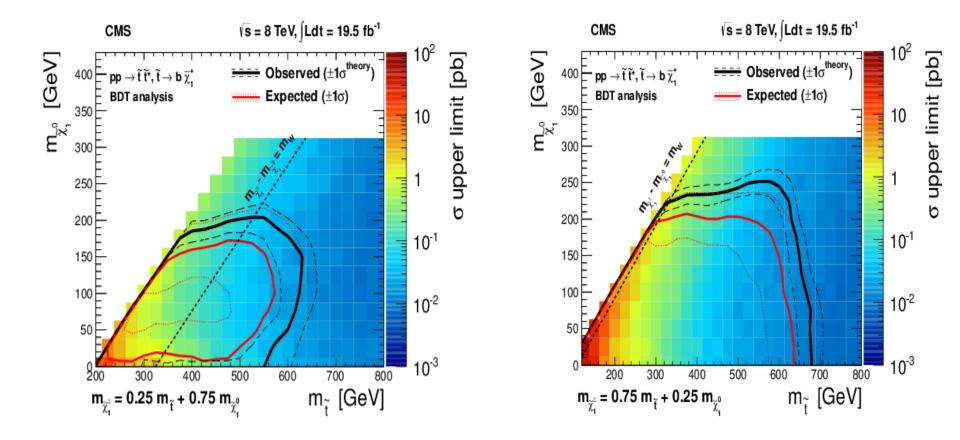
Additional material

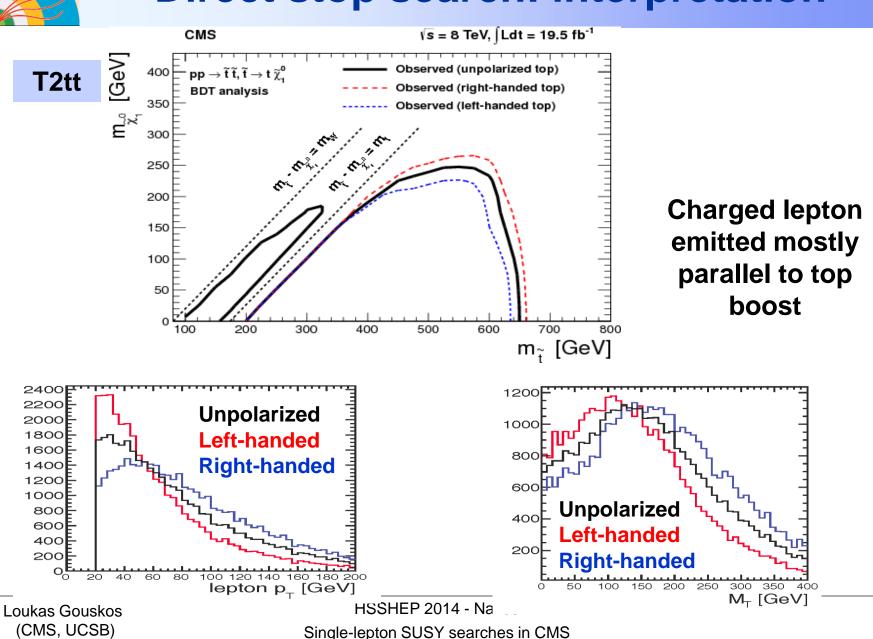
Direct stop search: results

$\tilde{t} \rightarrow b \chi^{\pm} \rightarrow$	$bW^{\pm} \tilde{\chi}_{1}^{0}$
---	---------------------------------

$\widetilde{t} \rightarrow b\widetilde{\chi}^+ x = 0.25$ Sample		BDT1		BDT2	2	BDT3
$t\bar{t} \rightarrow \ell \ell$		18 ± 4		2.2 ±	13	1.2 ± 1.0
$1\ell \text{ top}$		10 ± 4 10 ± 5		4.0±		1.2 ± 0.8 1.5 ± 0.8
W + jets		3±1		2.0±		0.7 ± 0.3
Rare		4 ± 2		1.6±		1.0 ± 0.5
Total		35 ± 6		9.8±	2.4	4.4 ± 1.4
Data		29		7		2
$\tilde{t} \rightarrow b\tilde{\chi}^+$ (450/50/0.25)		19 ± 2.9		11±3	2.2	5.2 ± 1.5
$\tilde{t} \rightarrow b \tilde{\chi}^+$ (600/100/0.25)		8.8 ± 0.8		$7.5 \pm$		5.6 ± 0.7
$\tilde{t} \rightarrow b\tilde{\chi}^+ x = 0.5$						
Sample	BDT1	BDT2-Lo	ose	BDT2-Tight	BDT3	BDT4
$t\bar{t} \rightarrow \ell \ell$	40 ± 5	21 ± 4		4±2	6 ± 2	100 ± 16
1ℓ top	24 ± 10	15 ± 7		4 ± 3	4 ± 2	33 ± 12
W + jets	5 ± 1	5 ± 1		2 ± 1	3 ± 1	5 ± 1
Rare	8 ± 4	8 ± 4		3 ± 1	4 ± 2	8 ± 4
Total	77 ± 12	50 ± 9		13 ± 4	17 ± 4	146 ± 21
Data	67	35		12	13	143
$\tilde{t} \rightarrow b \tilde{\chi}^+$ (250/50/0.5)	45 ± 7.6	24 ± 5.2		5.7 ± 2.4	5.2 ± 2.6	55 ± 8.1
$\widetilde{t} \rightarrow b\widetilde{\chi}^+$ (650/50/0.5)	3.5 ± 0.4	9.5 ± 0.7		5.6 ± 0.5	8.3 ± 0.6	3.2 ± 0.4
$\tilde{t} \rightarrow b\tilde{\chi}^+ x = 0.75$						
		BDT1		2	BDT3	BDT4
$t\bar{t} \rightarrow \ell \ell$	37±	5	9 ± 2		3.1 ± 1.3	248 ± 22
1ℓ top	$17 \pm$	9	6 ± 5		1.6 ± 1.6	188 ± 70
W + jets	4 ± 1		4 ± 1		1.6 ± 0.6	22 ± 6
Rare	4 ± 2	1	4 ± 2		1.8 ± 0.9	20 ± 10
Total	$61 \pm$	10	$22\pm$	6	8.1 ± 2.3	478 ± 74
Data 50		13			5	440
$\tilde{t} \rightarrow b \tilde{\chi}^+$ (250/50/0.75)		115 ± 13		5.6	8.0 ± 3.7	518 ± 28
$\tilde{t} \rightarrow b \tilde{\chi}^+$ (650/50/0.75)	3.9 ± 0.4				6.8 ± 0.6	5.5 ± 0.2

HSSHEP 2014 - Naxos

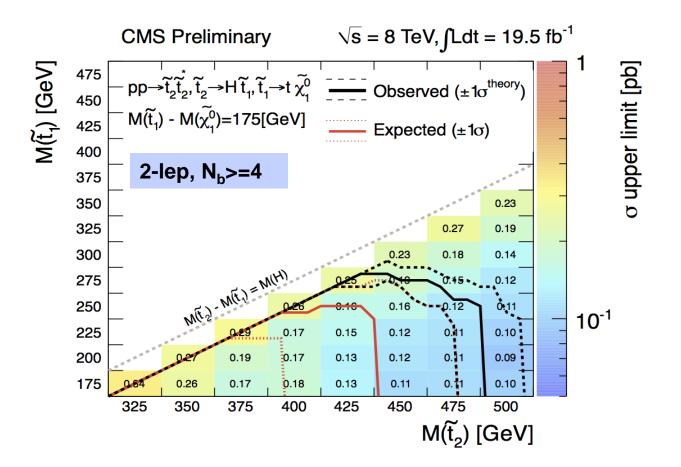

Single-lepton SUSY searches in CMS



Direct stop search: interpretation

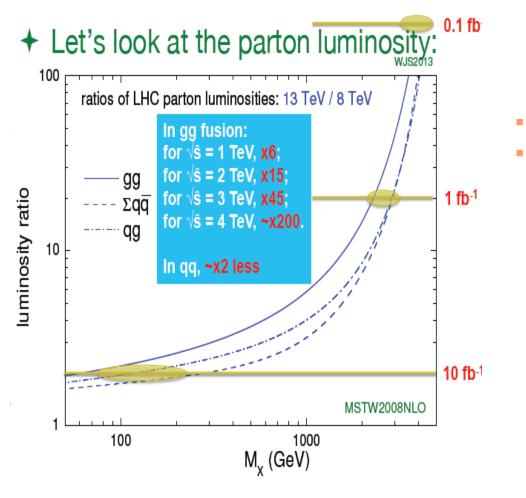
$$\tilde{t} \to b \chi^{\pm} \to b W^{\pm} \tilde{\chi}_{1}^{0}$$

Direct stop search: interpretation



EPJ C (2013) 73:2677

Direct stop search & H: results


Sensitivity driven by 2-lep search

Direct stop search: interpretation

From Greg Landsberg's talk

- Runl: M_g > 1.4 TeV @ 95% CL
- Probe M_g = 1.5 TeV
 - Corresponds to sqrt(s) = 3 TeV
 - Produced via g-g
 - boost in x-section @ 14 TeV ~ factor of 45
 - Exclusion sensitivity of M_g~1.5 TeV with ~0.5 fb⁻¹