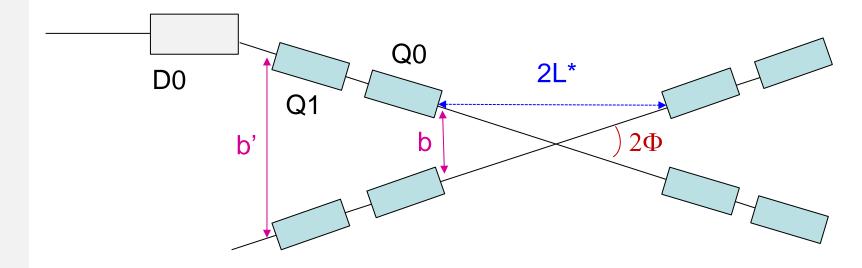


First estimate of vacuum chamber size at the IP

J. Wenninger



- Since the beam size in the horizontal plane is >> than in the vertical plane, it is the horizontal plane parameters that define the limits – assuming a round chamber.
- □ <u>Aperture margin</u>: as a starting point <u>30 σ </u> are considered to be sufficient, assuming the beams are collimated to 15-20 σ .
 - The low-beta quadrupole is likely to be the aperture margin in the vertical plane due to the large beam size \Leftrightarrow small β^* .
 - $_{\circ}$ We will inject with detector on, oscillations of 12 σ or so !
- Emittance: for the current parameter list the <u>horizontal</u> emittance is in the range of 1-30 nm. Use <u>50 nm</u> as maximum emittance.
- \square <u> β^* </u>: for the current parameter list the largest <u>horizontal</u> β^* is 1m. Use <u>1</u> <u>m</u> as maximum value.
- Alignment: assume a tolerance of <u>2 mm</u> for the relative alignment of beam line, experiment and vacuum chamber (also orbit).

Crossing angle

□ In case we operate with a large crossing angle, $2\Phi \approx 10-50$ mrad, the crossing of the beams requires an extra margin.

For the crossing angle (2F) margin, a chamber length of 40 cm (total length, ± 20 cm wrt IP) is assumed.

Parameter	Scenario1	Scenario2	Scenario3
β* (m)	1	1	2
ε (nm)	50	50	100
σ (μ m)	224	224	447
No. sigma	30	40	40
Margin beam (mm)	6.7	8.9	17.9
Alignment	2	3	3
2Φ (mrad)	50	0	0
Margin Φ (mm)	5	0	0
Radial clearance (mm)	13.7	11.9	20.9

A radius of 15 mm seems to be a reasonable starting point !