Brainstorming regarding final focus options

What do we need?
What can we get?
M. Koratzinos

2 December 2013

Situation at Delphi at LEP

Delphi had a:

- silicon vertex detector
- A small angle tagger (SAT) replaced by the small angle tile calorimeter (STIC) for absolute luminosity determination
- and a very small angle tagger (VSAT) after the last FF quad for relative luminosity determination
- A final focus superconducting quadrupole (QSC) 4 m from the IP

Reminder: DELPHI and VSAT

DELPHI Very Small Angle Tagger

QSC was at L* ~4m

VSAT placed 8 m from IP

VSAT location - x view

The DELPHI STIC

two cylindrical detectors placed on either side of the DELPHI interaction region at a distance of 220 cm , covering an angular region between 29 and 185 mrad in polar angle (from 6.5 to 42 cm in radius).

The DELPHI silicon tracker

recap

- DELPHI beam pipe: 12 cm diameter
- QSC $4 m$ from the IP, next to beam pipe
- Angle of last quadrupole: 15 mrad

The current status of the TLEP FF effort

- First attempt with L^{*} of 3.5 m does not yet work (one needs a lot of improvements):
- Momentum acceptance (especially at the -ve side) is only $\sim 0.5 \%$
- Dynamic aperture insufficient
- But beam size at 15 sigma at the quadrupole is ~10mm!!

mitigation

- We have three mitigation scenarios:
- We relax the condition on $L^{*}(3.5 \mathrm{~m})$
- We relax the condition on Beta* (1mm)
- We do none of the above and try harder
- Relaxing the condition on beta* (for me personally!) is not an option as it directly affects the luminosity

L^{*} of $2 m$

- We have tried to change the position of the last quadrupole - move it closer to the IP from 3.5 m to 2 m
- This improves dynamic aperture, but not the momentum acceptance
- It is currently not clear if this is the way to go (might be!)

Strategy

- We would like to find a (non-ideal perhaps) point which we can prove that works
- We then will try and move (adiabatically?) towards our goal of beta*=1mm, $\mathrm{L}^{*}=4 \mathrm{~m}$

This is work in progress. Please stay tuned for news

