
CHEP 2013 Extending pilot lifetime 1

CHEP 2013

Minimizing draining waste
through extending

the lifetime of pilot jobs
in Grid environments

by

I. Sfiligoi1, T. Martin1, B. P. Bockelman2, D. C. Bradley3,
F. Würthwein1

1University of California San Diego      2University of Nebraska-Lincoln
3University of Wisconsin-Madison



CHEP 2013 Extending pilot lifetime 2

Where are we coming from?

● Grid users have embraced the Pilot model
– Separates resource provisioning (via pilots)

from user job scheduling
– Pilot resources are temporary, 

but can execute several user jobs

● Pilot overheads have by-and-large been small
– At most minutes wasted for job fetching and cleanup
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What is changing?

● A pilot has traditionally managed a single CPU
– Which was assigned to a single user job at a time

● Several scientific communities now 
want more flexibility
– A single job may need more than one CPU
– But single-CPU jobs should not be forbidden

● As a consequence, pilots will be expected to 
grab multiple-CPUs at once, and then partition 
them among user jobs
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Why is this a problem?

● Pilot overhead will drastically increase
– Due to idling of part of the managed resources

once it is not starting new jobs anymore 
● The pilot has to wait for the longest user job

– And user job lifetimes can vary a lot
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We need long-lived pilots

● Minimizing the absolute waste a hard problem
– Would need to know at least a very good 

estimate of the expected runtime of each user job
● Which many studies have shown to be a hard problem

● Keeping relative waste small 
requires just long-lived pilot jobs
– Conceptually, a very easy solution

● In practice, most sites limit pilots to 24h-48h
– Which is still pretty short! 

rel_waste=abs_waste/pilot_runtime
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The problem of long runtimes 1/2

● While long runtimes are great for pilots, currently 
they are a real problem for the resource providers

● In HTC we try to maximize resource utilization
(High Throughput Computing)

– If a user does not have enough jobs in the queue 
to fill his share of resources, 
jobs from other users are scheduled on them

● But when that user submits a job he 
expects it to start quickly 
– But there are no idle resources at that point!
– The user's job has to wait for another job to finish
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The problem of long runtimes 2/2

● With short runtimes, job turnover is high
– Average turnover ~ num_cpus/avg_job_runtime

● However, longer runtimes

→ lower job turnover
→ longer wait times for an available resource

● Resource providers thus would have 
to choose between
– Lowering quality of service, or

– Forceful termination of running jobs

num_cpus = 2400
avg_job_runtime = 4h

Avg_turnover = 10/minute

num_cpus = 2400
avg_job_runtime = 4h

Avg_turnover = 10/minute

An example

SLA likely to
force terminations
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Need for termination smartness

● Random forceful job termination is undesirable
– For most Grid jobs it means lost work

– Pilot jobs not much better
● Work of currently running user job(s) likely to be lost
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Pilot jobs are special

● In one aspect, pilot jobs are special
– Compared to typical Grid jobs

● Pilot jobs could go cleanly away 
on a relatively short notice
– Terminate on served user job termination

Short compared
to total runtime
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Adding smartness to termination
of pilot jobs

● Resource providers are not evil  (the vast majority, at least)

– But currently lack technical means
for implementing a smart termination policy

● What is needed is
– Enough information 

for picking the best victims

– A mechanism 
to request termination of the chosen pilot
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Selecting the cooperative victim

● Most HTC systems have some sort of notion of 
priority between users
– So the victim pilot job will come 

from the least privileged user
– No new info needed here

● Within the jobs of that user, the ideal victim 
will likely be the one that results in either
– Minimal waste, or

– Minimal time-to-completion
● The pilot owner may 

have preferences, too

Need a way for the 
pilot to communicate
relevant info 
to the resource provider
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Information available to the pilot
In a picture

Legend:
Information known at discrete intervals
Estimated information
Information that can be derived

Legend:
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Information that can be derived
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Communication channel

● The pilots must provide the needed 
information in a standardized way
– It is not reasonable to expect the resource owner 

to know the internal workings of all pilot SW!

● Our proposal is to use a file in the pilot's 
startup dir as the communication channel
– Simple text file, with

each line containing
<key> = <value>

File name:

.pilot.ad
File name:

.pilot.ad
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Proposed attributes

● UNIX time (integer)
– LAST_JOB_START
– FIRST_EXP_JOB_END
– LAST_EXP_JOB_END
– LAST_MAX_JOB_END

● Fractions, integer in the [0-1024] range
(with 1024 meaning 100%)
– USED_FRACTION1k
– ADD_UNCOM_TIME1k
– ADD_FINAL_EXP_WASTE1k

● Arbitrary integer
– PRIORITY_FACTOR

Guaranteed

Good faith estimate

Integral of fraction over time

Numbers only need
to be updated

on job start/end

File name:

.pilot.ad
File name:

.pilot.ad

Higher is better
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Additional goodies - Heartbeat

● Resource providers have been 
burned by stuck jobs in the past
– Short runtime limits make sure 

they do not waste much

– Long running jobs can mitigate 
by providing a heartbeat

● We propose to use the 
file's last modification time as heartbeat
– A stuck pilot is unlikely to do it File name:

.pilot.ad
File name:

.pilot.ad
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Additional goodies – Current state

● A pilot job may already be in draining state
– i.e. will go away as soon as 

the current user job(s) terminate
– Either due to a previous order from the 

resource provider, or internal logic
● More often than not, you do not want to 

look for additional victims if there are 
sufficient pilots already draining

● We thus propose to add 
an additional attribute:
– CAN_POSTPONE_LAST_JOB – Boolean

File name:

.pilot.ad
File name:

.pilot.ad
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Terminating the victim pilot

● Once a victim pilot is chosen
– The resource owner must 

order the termination of the chosen pilot 

● Two options:
– Hard kill

– Ask the pilot to gracefully terminate on its own
● Possibly within a set grace period

Currently only option
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Requesting pilot termination

● Once again, we need a standardized channel
– It is not reasonable to expect the resource owner to 

know the internal workings of all pilot SW!

● Our proposal, again, is to use a file in the pilot's 
startup dir as the communication channel
(but this time the resource provider writes, and pilot reads)

– Again, simple text list of
<key> = <value>

● Two attributes defined
– VACATE_DESIRED - Boolean

– PAYLOAD_DEADLINE - Unix timestamp, hard deadline (optional)

File name:

.site.ad
File name:

.site.ad
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Building a prototype

● We have a prototype version of glideinWMS 
that supports the above spec
– Has been deployed on a subset of 

the production instances

– Has been submitting instrumented 
glidein pilots for about a month

● We have configured 3 USCMS sites to 
recognize instrumented pilots
– And raised the pilot job limits to 1 week

Assuming you
are familiar

with glideinWMS
in the rest
of the talk.
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Running out of talk time

● Not enough time left to go over 
the details of the prototype

● Details available
– Later on these slides, which are 

posted on the conference site

– In the paper
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Just a final picture

Opportunistic VO

Owner VO needs
more resources.

Site admin requests
opportunistic VO
to go away.

See the inversion
in running trend
after a short delay. 

Owner VO has
little work,
pilots scaling down.

Opportunistic VO
takes the unused
slots.

Owner VO
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Conclusions

● Scientific communities are moving 
to multi-CPU pilot jobs

● In order to keep relative overheads low,
longer lived pilot jobs are needed

● Long pilot jobs will force resource providers to 
forcefully terminate a significant fraction
– Requiring smart job termination strategies

● We address this by proposing a standardized 
mechanism to exchange relevant information 
between pilot jobs and resource providers
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Building a prototype

● We have a prototype version of glideinWMS 
that supports the above spec
– Has been deployed on a subset of 

the production instances

– Has been submitting instrumented 
glidein pilots for about a month

● We have configured 3 USCMS sites to 
recognize instrumented pilots
– And raised the pilot job limits to 1 week

Assuming you
are familiar

with HTCondor
in the rest
of the talk.
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glideinWMS changes
Information Advertising

● The glidein wrapper sets
USED_FRACTION1k = 0
before HTCondor daemons start

● Using the HTCondor CRON mechanism, 
periodically:
– Identify if any jobs are running by parsing the Startd logs

– Write the status in .pilot.ad
● If no running, set USED_FRACTION1k = 0

● Else, define all the attributes, and set
USED_FRACTION1k = 1024

File name:

.pilot.ad
File name:

.pilot.ad

Yes,
works only for 

single CPU Pilots
for now.

Extending it
should be

easy enough.
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glideinWMS changes
Receiving orders

● Again, HTCondor CRON used
to parse .site.ad
– Then publish as glidein attribute

GLIDEIN_RetireNow – Boolean

● This attribute is then used by HTCondor
● If set to true:

– No new jobs will start

– The glidein will terminate 
as soon as the user job is done

File name:

.site.ad
File name:

.site.ad
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Grid site configuration

● The authors have administrative privileges 
on 3 USCMS Grid sites
– So we tampered with those

– They all use HTCondor as batch system

● Two different approaches used
– UCSD and UWM went for a semi-automated solution

– UNL went for a fully automated solution
● Using a pre-release version of HTCondor
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Propagating Pilot Information

● Using HTCondor CRON-like capabilities
● Read the .pilot.ad files and propagate them 

into HTCondor ClassAds
– Same syntax, just prepend

PILOT_
to all attribute names

● UCSD&UWM → Slot ClassAd
UNL → Job ClassAd
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The fully automated solution

● Negotiator keeps track which jobs 
need to be preempted

● Instead of immediately sending a hard kill, set 
VACATE_DESIRED = true
PAYLOAD_DEADLINE = <now + 2h>

– If the Pilot is not gone in time, it will be hard killed

Currently requires
a custom HTCondor
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The semi-automatic solution

● The system admin monitors
the resource usage:
– e.g. by using condor_status and condor_userprio

● When share imbalance is detected
– Pick the victims

– For each victim Pilot
● Reach the startup dir with condor_ssh_to_job
● Create a .site.ad containing VACATE_DESIRED = true

No automated
hard killing.

Fully automated from cmdline

Currently a manual
step, but should be

easy to script
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Side benefits

● Having a standardized communication 
channel between the resource provider 
and the pilots allows for 
all kind of information to be exchanged

● Obvious candidates include (but are not limited to):
– Resource Provider: Batch slot description

● e.g. # CPUs and a memory limit

– Pilot: User job identities
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Side benefits

● Having a standardized communication 
channel between the resource provider 
and the pilots allows for 
all kind of information to be exchanged

● Obvious candidates include (but are not limited to):
– Resource Provider: Batch slot description

● e.g. # CPUs and a memory limit

– Pilot: User job identities

To be useful, 
requires standardization

of attributes

Beyond the scope
of this document
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