
CHEP 2013 Extending pilot lifetime 1

CHEP 2013

Minimizing draining waste
through extending

the lifetime of pilot jobs
in Grid environments

by

I. Sfiligoi1, T. Martin1, B. P. Bockelman2, D. C. Bradley3,
F. Würthwein1

1University of California San Diego      2University of Nebraska-Lincoln
3University of Wisconsin-Madison



CHEP 2013 Extending pilot lifetime 2

Where are we coming from?

● Grid users have embraced the Pilot model
– Separates resource provisioning (via pilots)

from user job scheduling
– Pilot resources are temporary, 

but can execute several user jobs

● Pilot overheads have by-and-large been small
– At most minutes wasted for job fetching and cleanup

Grid Scheduler

Pilot Scheduler

Provisioning
Service

Pilot

job2 job3
time

job1



CHEP 2013 Extending pilot lifetime 3

What is changing?

● A pilot has traditionally managed a single CPU
– Which was assigned to a single user job at a time

● Several scientific communities now 
want more flexibility
– A single job may need more than one CPU
– But single-CPU jobs should not be forbidden

● As a consequence, pilots will be expected to 
grab multiple-CPUs at once, and then partition 
them among user jobs



CHEP 2013 Extending pilot lifetime 4

Why is this a problem?

● Pilot overhead will drastically increase
– Due to idling of part of the managed resources

once it is not starting new jobs anymore 
● The pilot has to wait for the longest user job

– And user job lifetimes can vary a lot

job3

job2

job1
job5

job6

job8

job4 job7 job9

WASTE

1

2

3

4

CPU

time
Last useful start time



CHEP 2013 Extending pilot lifetime 5

We need long-lived pilots

● Minimizing the absolute waste a hard problem
– Would need to know at least a very good 

estimate of the expected runtime of each user job
● Which many studies have shown to be a hard problem

● Keeping relative waste small 
requires just long-lived pilot jobs
– Conceptually, a very easy solution

● In practice, most sites limit pilots to 24h-48h
– Which is still pretty short! 

rel_waste=abs_waste/pilot_runtime



CHEP 2013 Extending pilot lifetime 6

The problem of long runtimes 1/2

● While long runtimes are great for pilots, currently 
they are a real problem for the resource providers

● In HTC we try to maximize resource utilization
(High Throughput Computing)

– If a user does not have enough jobs in the queue 
to fill his share of resources, 
jobs from other users are scheduled on them

● But when that user submits a job he 
expects it to start quickly 
– But there are no idle resources at that point!
– The user's job has to wait for another job to finish



CHEP 2013 Extending pilot lifetime 7

The problem of long runtimes 2/2

● With short runtimes, job turnover is high
– Average turnover ~ num_cpus/avg_job_runtime

● However, longer runtimes

→ lower job turnover
→ longer wait times for an available resource

● Resource providers thus would have 
to choose between
– Lowering quality of service, or

– Forceful termination of running jobs

num_cpus = 2400
avg_job_runtime = 4h

Avg_turnover = 10/minute

num_cpus = 2400
avg_job_runtime = 4h

Avg_turnover = 10/minute

An example

SLA likely to
force terminations



CHEP 2013 Extending pilot lifetime 8

Need for termination smartness

● Random forceful job termination is undesirable
– For most Grid jobs it means lost work

– Pilot jobs not much better
● Work of currently running user job(s) likely to be lost

job3

job2

job1
job5

job6

job8

job4 job7 job9

WASTE

1

2

3

4

CPU

time
Forceful termination

Waste



CHEP 2013 Extending pilot lifetime 9

Pilot jobs are special

● In one aspect, pilot jobs are special
– Compared to typical Grid jobs

● Pilot jobs could go cleanly away 
on a relatively short notice
– Terminate on served user job termination

Short compared
to total runtime

job3

job2

job1
job5

job6

job8

job4 job7 job9

WASTE

1

2

3

4

CPU

timeTermination requested

Pilot
terminates



CHEP 2013 Extending pilot lifetime 10

Adding smartness to termination
of pilot jobs

● Resource providers are not evil  (the vast majority, at least)

– But currently lack technical means
for implementing a smart termination policy

● What is needed is
– Enough information 

for picking the best victims

– A mechanism 
to request termination of the chosen pilot



CHEP 2013 Extending pilot lifetime 11

Selecting the cooperative victim

● Most HTC systems have some sort of notion of 
priority between users
– So the victim pilot job will come 

from the least privileged user
– No new info needed here

● Within the jobs of that user, the ideal victim 
will likely be the one that results in either
– Minimal waste, or

– Minimal time-to-completion
● The pilot owner may 

have preferences, too

Need a way for the 
pilot to communicate
relevant info 
to the resource provider



CHEP 2013 Extending pilot lifetime 12

Information available to the pilot
In a picture

Legend:
Information known at discrete intervals
Estimated information
Information that can be derived

Legend:
Information known at discrete intervals
Estimated information
Information that can be derived

Additional
uncomitted
time

Final
draining
waste

Current
time

Last job start First job end

Fraction
in use

Sliding un-
comitted time

Sliding
draining waste

Last job end



CHEP 2013 Extending pilot lifetime 13

Communication channel

● The pilots must provide the needed 
information in a standardized way
– It is not reasonable to expect the resource owner 

to know the internal workings of all pilot SW!

● Our proposal is to use a file in the pilot's 
startup dir as the communication channel
– Simple text file, with

each line containing
<key> = <value>

File name:

.pilot.ad
File name:

.pilot.ad



CHEP 2013 Extending pilot lifetime 14

Proposed attributes

● UNIX time (integer)
– LAST_JOB_START
– FIRST_EXP_JOB_END
– LAST_EXP_JOB_END
– LAST_MAX_JOB_END

● Fractions, integer in the [0-1024] range
(with 1024 meaning 100%)
– USED_FRACTION1k
– ADD_UNCOM_TIME1k
– ADD_FINAL_EXP_WASTE1k

● Arbitrary integer
– PRIORITY_FACTOR

Guaranteed

Good faith estimate

Integral of fraction over time

Numbers only need
to be updated

on job start/end

File name:

.pilot.ad
File name:

.pilot.ad

Higher is better



CHEP 2013 Extending pilot lifetime 15

Additional goodies - Heartbeat

● Resource providers have been 
burned by stuck jobs in the past
– Short runtime limits make sure 

they do not waste much

– Long running jobs can mitigate 
by providing a heartbeat

● We propose to use the 
file's last modification time as heartbeat
– A stuck pilot is unlikely to do it File name:

.pilot.ad
File name:

.pilot.ad



CHEP 2013 Extending pilot lifetime 16

Additional goodies – Current state

● A pilot job may already be in draining state
– i.e. will go away as soon as 

the current user job(s) terminate
– Either due to a previous order from the 

resource provider, or internal logic
● More often than not, you do not want to 

look for additional victims if there are 
sufficient pilots already draining

● We thus propose to add 
an additional attribute:
– CAN_POSTPONE_LAST_JOB – Boolean

File name:

.pilot.ad
File name:

.pilot.ad



CHEP 2013 Extending pilot lifetime 17

Terminating the victim pilot

● Once a victim pilot is chosen
– The resource owner must 

order the termination of the chosen pilot 

● Two options:
– Hard kill

– Ask the pilot to gracefully terminate on its own
● Possibly within a set grace period

Currently only option



CHEP 2013 Extending pilot lifetime 18

Requesting pilot termination

● Once again, we need a standardized channel
– It is not reasonable to expect the resource owner to 

know the internal workings of all pilot SW!

● Our proposal, again, is to use a file in the pilot's 
startup dir as the communication channel
(but this time the resource provider writes, and pilot reads)

– Again, simple text list of
<key> = <value>

● Two attributes defined
– VACATE_DESIRED - Boolean

– PAYLOAD_DEADLINE - Unix timestamp, hard deadline (optional)

File name:

.site.ad
File name:

.site.ad



CHEP 2013 Extending pilot lifetime 19

Building a prototype

● We have a prototype version of glideinWMS 
that supports the above spec
– Has been deployed on a subset of 

the production instances

– Has been submitting instrumented 
glidein pilots for about a month

● We have configured 3 USCMS sites to 
recognize instrumented pilots
– And raised the pilot job limits to 1 week

Assuming you
are familiar

with glideinWMS
in the rest
of the talk.



CHEP 2013 Extending pilot lifetime 20

Running out of talk time

● Not enough time left to go over 
the details of the prototype

● Details available
– Later on these slides, which are 

posted on the conference site

– In the paper



CHEP 2013 Extending pilot lifetime 21

Just a final picture

Opportunistic VO

Owner VO needs
more resources.

Site admin requests
opportunistic VO
to go away.

See the inversion
in running trend
after a short delay. 

Owner VO has
little work,
pilots scaling down.

Opportunistic VO
takes the unused
slots.

Owner VO



CHEP 2013 Extending pilot lifetime 22

Conclusions

● Scientific communities are moving 
to multi-CPU pilot jobs

● In order to keep relative overheads low,
longer lived pilot jobs are needed

● Long pilot jobs will force resource providers to 
forcefully terminate a significant fraction
– Requiring smart job termination strategies

● We address this by proposing a standardized 
mechanism to exchange relevant information 
between pilot jobs and resource providers



CHEP 2013 Extending pilot lifetime 23

Acknowledgements

● This work was partially sponsored by the US 
National Science Foundation under Grants 
No. PHY-1148698 and PHY-1120138.



CHEP 2013 Extending pilot lifetime 24

Additional material

For offline consultation



CHEP 2013 Extending pilot lifetime 25

Building a prototype

● We have a prototype version of glideinWMS 
that supports the above spec
– Has been deployed on a subset of 

the production instances

– Has been submitting instrumented 
glidein pilots for about a month

● We have configured 3 USCMS sites to 
recognize instrumented pilots
– And raised the pilot job limits to 1 week

Assuming you
are familiar

with HTCondor
in the rest
of the talk.



CHEP 2013 Extending pilot lifetime 26

glideinWMS changes
Information Advertising

● The glidein wrapper sets
USED_FRACTION1k = 0
before HTCondor daemons start

● Using the HTCondor CRON mechanism, 
periodically:
– Identify if any jobs are running by parsing the Startd logs

– Write the status in .pilot.ad
● If no running, set USED_FRACTION1k = 0

● Else, define all the attributes, and set
USED_FRACTION1k = 1024

File name:

.pilot.ad
File name:

.pilot.ad

Yes,
works only for 

single CPU Pilots
for now.

Extending it
should be

easy enough.



CHEP 2013 Extending pilot lifetime 27

glideinWMS changes
Receiving orders

● Again, HTCondor CRON used
to parse .site.ad
– Then publish as glidein attribute

GLIDEIN_RetireNow – Boolean

● This attribute is then used by HTCondor
● If set to true:

– No new jobs will start

– The glidein will terminate 
as soon as the user job is done

File name:

.site.ad
File name:

.site.ad



CHEP 2013 Extending pilot lifetime 28

Grid site configuration

● The authors have administrative privileges 
on 3 USCMS Grid sites
– So we tampered with those

– They all use HTCondor as batch system

● Two different approaches used
– UCSD and UWM went for a semi-automated solution

– UNL went for a fully automated solution
● Using a pre-release version of HTCondor



CHEP 2013 Extending pilot lifetime 29

Propagating Pilot Information

● Using HTCondor CRON-like capabilities
● Read the .pilot.ad files and propagate them 

into HTCondor ClassAds
– Same syntax, just prepend

PILOT_
to all attribute names

● UCSD&UWM → Slot ClassAd
UNL → Job ClassAd



CHEP 2013 Extending pilot lifetime 30

The fully automated solution

● Negotiator keeps track which jobs 
need to be preempted

● Instead of immediately sending a hard kill, set 
VACATE_DESIRED = true
PAYLOAD_DEADLINE = <now + 2h>

– If the Pilot is not gone in time, it will be hard killed

Currently requires
a custom HTCondor



CHEP 2013 Extending pilot lifetime 31

The semi-automatic solution

● The system admin monitors
the resource usage:
– e.g. by using condor_status and condor_userprio

● When share imbalance is detected
– Pick the victims

– For each victim Pilot
● Reach the startup dir with condor_ssh_to_job
● Create a .site.ad containing VACATE_DESIRED = true

No automated
hard killing.

Fully automated from cmdline

Currently a manual
step, but should be

easy to script



CHEP 2013 Extending pilot lifetime 32

Side benefits

● Having a standardized communication 
channel between the resource provider 
and the pilots allows for 
all kind of information to be exchanged

● Obvious candidates include (but are not limited to):
– Resource Provider: Batch slot description

● e.g. # CPUs and a memory limit

– Pilot: User job identities



CHEP 2013 Extending pilot lifetime 33

Side benefits

● Having a standardized communication 
channel between the resource provider 
and the pilots allows for 
all kind of information to be exchanged

● Obvious candidates include (but are not limited to):
– Resource Provider: Batch slot description

● e.g. # CPUs and a memory limit

– Pilot: User job identities

To be useful, 
requires standardization

of attributes

Beyond the scope
of this document


	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33

