

Fringe field implementation

Dave Brett, University of Manchester

Choice of model

- Choose (a) as conserves original hard edge model and doesn't interfere with error tables.
- Integrator/ Taylor map if of part of magnet symplecticity broken ending mid magnet.
 - If full magnet integrated need
 ~200 steps per magnet. 24
 magnets per turn. 4800 steps per turn.
 - Experience with crabs, numerical integrator 840 steps per turn -> 1 week to do 70,000 turns.

Leading order model

- Leading order model calculates
 Bz kick based upon quadrupole field going to a step function.
- Bz field dominated by components of leading order model.

$$k_0^{[\text{effective}]} = k_0$$

$$H = \frac{q}{p_0} \hat{B} \frac{1}{1+\delta} \left[\frac{b_1}{12} \left(3x^2 y p_y - 3y^2 x p_x + y^3 p_y - x^3 p_x \right) + \frac{a_1}{6} \left(x^3 p_y + y^3 p_x \right) \right]$$

$$k_0 = \frac{q\hat{B}}{p_0}b_1$$

$$k_0^{\text{[effective]}} = 4\frac{q}{p_0} \int_0^L A_x[xy^2](s) \ ds$$

--- Hard edge position $\,$ --- Contribution from $A_x[xy^2]$ and $A_y[x^2y]$ components

At x=30mm, normalised to MQXC.1R1

Only skew quadrupole component solvable.

Higher order terms not solvable.

Rotate beam -45°, transfer map, reverse rotation

Leading order model

- Comparing Forest-Wu integrator through fitted Ax, Ay components of field with leading order model.
- Agreement begins to fail after ~30 mm particularly in py dependence of y.
- Effect overall very small compared with magnitude of kicks from Az.
- Az kicks wrapped up in error table.
- Preliminary implementation in SixTrack.

-*- Leading order thin lens model \rightarrow Numerical integration of $A_{x,y}$

-*- Leading order thin lens model \rightarrow Numerical integration of $A_{x,y}$

SixTrack result

- Implemented in FOX and numerical tracking.
- Strength needs to be passed from MADX (this is not implemented yet).
- Current implementation involved manual insertion on fort.2 files (Like Taylor maps).
- Study run with SLHC v3.1b optics, IT v6.6 errors, WISE arc errors, 60 seeds, no crab cavities, no beambeam. Fringe fields applied to IT magnets in IR1 and IR5 only.

Conclusion

- Fringe field leading order model seems suitable and shows that it has some effect on the DA.
- Input into MADX needed to allow inclusion in mask file.
- Suggestion:
 - New special marker type which can have element type and strength values passed to SixTrack from MADX.