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What is a plasma?

Simple definition: a quasi-neutral gas of charged particles
showing collective behaviour.

Quasi-neutrality: number densities of electrons, ne, and ions,
ni , with charge state Z are locally balanced :

ne ' Zni . (1)

Collective behaviour: long range of Coulomb potential (1/r )
leads to nonlocal influence of disturbances in equilibrium.

Macroscopic fields usually dominate over microscopic
fluctuations, e.g.:

ρ = e(Zni − ne)⇒ ∇.E = ρ/ε0
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Where are plasmas found?

1 cosmos (99% of visible universe):
interstellar medium (ISM)
stars
jets

2 ionosphere:
≤ 50 km = 10 Earth-radii
long-wave radio

3 Earth:
fusion devices
street lighting
plasma torches
discharges - lightning
plasma accelerators!
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Plasma properties

Type Electron density Temperature
ne ( cm−3) Te (eV∗)

Stars 1026 2× 103

Laser fusion 1025 3× 103

Magnetic fusion 1015 103

Laser-produced 1018 − 1024 102 − 103

Discharges 1012 1-10
Ionosphere 106 0.1
ISM 1 10−2

Table 1: Densities and temperatures of various plasma types

∗ 1eV ≡ 11600K
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Debye shielding

What is the potential φ(r) of an ion (or positively charged
sphere) immersed in a plasma?
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Debye shielding (2): ions vs electrons

For equal ion and electron temperatures (Te = Ti ), we have:

1
2

mev2
e =

1
2

miv2
i =

3
2

kBTe (2)

Therefore,

vi

ve
=

(
me

mi

)1/2

=

(
me

Amp

)1/2

=
1
43

(hydrogen, Z=A=1)

Ions are almost stationary on electron timescale!
To a good approximation, we can often write:

ni ' n0,

where the material (eg gas) number density, n0 = NAρm/A.
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Debye shielding (3)

In thermal equilibrium, the electron density follows a Boltzmann
distribution∗:

ne = ni exp(eφ/kBTe) (3)

where ni is the ion density and kB is the Boltzmann constant.

From Gauss’ law (Poisson’s equation):

∇2φ = − ρ

ε0
= − e

ε0
(ni − ne) (4)

∗ See, eg: F. F. Chen, p. 9
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Debye shielding (4)

Combining (4) with (3) in spherical geometrya and
requiring φ→ 0 at r =∞, get solution:

φD =
1

4πε0

e−r/λD

r
. (5)

Exercise

with

Debye length

λD =

(
ε0kBTe

e2ne

)1/2

= 743
(

Te

eV

)1/2( ne

cm−3

)−1/2

cm (6)

a∇2 → 1
r2

d
dr (r2 dφ

dr )

Introduction Debye shielding 10 57



Debye sphere

An ideal plasma has many particles per Debye sphere:

ND ≡ ne
4π
3
λ3

D � 1. (7)

⇒ Prerequisite for collective behaviour.

Alternatively, can define plasma parameter :

g ≡ 1
neλ

3
D

Classical plasma theory based on assumption that g � 1, which
also implies dominance of collective effects over collisions
between particles.
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Collisions in plasmas

At the other extreme, where ND ≤ 1, screening effects are
reduced and collisions will dominate the particle dynamics. A
good measure of this is the electron-ion collision rate, given by:

νei =
π

3
2 neZe4 ln Λ

2
1
2 (4πε0)2m2

ev3
te

s−1

vte ≡
√

kBTe/me is the electron thermal velocity and ln Λ is a
slowly varying term (Coulomb logarithm) O(10− 20).

Can show that

νei

ωp
' Z ln Λ

10ND
; with ln Λ ' 9ND/Z
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Plasma classification
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Model hierarchy

1 First principles N-body molecular dynamics

2 Phase-space methods – Vlasov-Boltzmann

3 2-fluid equations

4 Magnetohydrodynamics (single, magnetised fluid)

Time-scales: 10−15 – 103 s

Length-scales: 10−9 – 10 m

Number of particles needed for first-principles modelling (1):
1021 (tokamak), 1020 (laser-heated solid)
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Plasma oscillations: capacitor model

Consider electron layer displaced from plasma slab by length δ.
This creates two ’capacitor’ plates with surface charge
σ = ±eneδ, resulting in an electric field:

E =
σ

ε0
=

eneδ

ε0
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Capacitor model (2)

The electron layer is accelerated back towards the slab by this
restoring force according to:

me
dv
dt

= −me
d2δ

dt2 = −eE =
e2neδ

ε0

Or:
d2δ

dt2 + ω2
pδ = 0,

where

Electron plasma frequency

ωp ≡
(

e2ne

ε0me

)1/2

' 5.6× 104
(

ne

cm−3

)1/2

s−1. (8)
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Response time to create Debye sheath

For a plasma with temperature Te (and thermal velocity
vte ≡

√
kBTe/me), one can also define a characteristic reponse

time to recover quasi-neutrality:

tD '
λD

vte
=

(
ε0kBTe

e2ne
· m

kBTe

)1/2

= ω−1
p .
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External fields: underdense vs. overdense

If the plasma response time is shorter than the period of a
external electromagnetic field (such as a laser), then this
radiation will be shielded out.

Figure 1: Underdense, ω > ωp:
plasma acts as nonlinear
refractive medium

Figure 2: Overdense, ω < ωp:
plasma acts like mirror
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The critical density

To make this more quantitative, consider ratio:

ω2
p

ω2 =
e2ne

ε0me
· λ2

4π2c2 .

Setting this to unity defines the wavelength for which ne = nc , or
the

Critical density

nc ' 1021λ−2
µ cm−3 (9)

above which radiation with wavelengths λ > λµ will be reflected.
cf: radio waves from ionosphere.

Introduction Plasma oscillations 19 57

Plasma creation: field ionization
At the Bohr radius

aB =
~2

me2 = 5.3× 10−9 cm,

the electric field strength is:

Ea =
e

4πε0a2
B

' 5.1× 109 Vm−1. (10)

This leads to the atomic intensity :

Ia =
ε0cE2

a

2
' 3.51× 1016 Wcm−2. (11)

A laser intensity of IL > Ia will guarantee ionization for any target
material, though in fact this can occur well below this threshold
value (eg: ∼ 1014 Wcm−2 for hydrogen) via multiphoton effects .
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Ionized gases: when is plasma response important?
Simultaneous field ionization of many atoms produces a plasma
with electron density ne, temperature Te ∼ 1− 10 eV. Collective
effects important if

ωpτinteraction > 1

Example (Gas jet)

τint = 100 fs, ne = 1017 cm−3 → ωpτint = 1.8
Typical gas jets: P ∼ 1bar; ne = 1018 − 1019 cm−3

Recall that from Eq.9, critical density for glass laser
nc(1µ) = 1021 cm−3. Gas-jet plasmas are therefore
underdense, since ω2/ω2

p = ne/nc � 1.

Exploit plasma effects for: short-wavelength radiation; nonlinear
refractive properties; high electric/magnetic fields; particle
acceleration!
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Relativistic field strengths

Classical equation of motion for an electron exposed to a linearly
polarized laser field E = ŷE0 sinωt :

dv
dt

' −eE0

me
sinωt

→ v =
eE0

meω
cosωt = vos cosωt (12)

Dimensionless oscillation amplitude, or ’quiver’ velocity:

a0 ≡
vos

c
≡ pos

mec
≡ eE0

meωc
(13)
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Relativistic intensity

The laser intensity IL and wavelength λL are related to E0 and ω
by:

IL =
1
2
ε0cE2

0 ; λL =
2πc
ω

Substituting these into (13) we find :

a0 ' 0.85(I18λ
2
µ)1/2, (14)

where

I18 =
IL

1018 Wcm−2 ; λµ =
λL

µm
.

Exercise

Implies that for IL ≥ 1018 Wcm−2, λL ' 1 µm, we will have
relativistic electron velocities, or a0 ∼ 1.
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Further reading

1 F. F. Chen, Plasma Physics and Controlled Fusion, 2nd Ed.
(Springer, 2006)

2 R.O. Dendy (ed.), Plasma Physics, An Introductory Course,
(Cambridge University Press, 1993)

3 J. D. Huba, NRL Plasma Formulary, (NRL, Washington DC,
2007) http://www.nrl.navy.mil/ppd/content/nrl-plasma-formulary
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Lecture 2: Wave propagation in plasmas

Plasma oscillations

Transverse waves

Nonlinear wave propagation

Further reading

Formulary
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Model hierarchy

1 First principles N-body molecular dynamics

2 Phase-space methods – Vlasov-Boltzmann

3 2-fluid equations

4 Magnetohydrodynamics (single, magnetised fluid)
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The 2-fluid model

Many plasma phenomena can be analysed by assuming that
each charged particle component with density ns and velocity us

behaves in a fluid-like manner, interacting with other species (s)
via the electric and magnetic fields. The rigorous way to derive
the governing equations in this approximation is via kinetic
theory, which is beyond the scope of this lecture.

We therefore begin with the 2-fluid equations for a plasma
assumed to be:

thermal: Te > 0

collisionless: νie ' 0

and non-relativistic: velocities u � c.
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The 2-fluid model (2)

∂ns

∂t
+∇ · (nsus) = 0 (15)

nsms
dus

dt
= nsqs(E + us × B)−∇Ps (16)

d
dt

(Psn−γs
s ) = 0 (17)

Ps is the thermal pressure of species s; γs the specific heat ratio,
or (2 + N)/N), where N is the number of degrees of freedom.
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Continuity equation

The continuity equation (Eq. 15) tells us that (in the absence of
ionization or recombination) the number of particles of each
species is conserved.

Noting that the charge and current densities can be written
ρs = qsns and Js = qsnsus respectively, Eq. (15) can also be
written:

∂ρs

∂t
+∇ · Js = 0, (18)

which expresses the conservation of charge.
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Momentum equation

(Eq. 16) governs the motion of a fluid element of species s in the
presence of electric and magnetic fields E and B.

Remark: In the absence of fields, and assuming strict
quasineutrality (ne = Zni = n; ue = ui = u), we recover the
Navier-Stokes equations. Exercise

In the plasma accelerator context we will usually deal with
unmagnetised plasmas, and stationary ions ui = 0, in which
case the momentum equation reads:

neme
due

dt
= −eneE −∇Pe (19)

Note that E can include both external and internal field
components (via charge-separation).
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Longitudinal plasma waves
A characteristic property of plasmas is their ability to transfer
momentum and energy via collective motion. One of the most
important examples of this is the oscillation of the electrons
against a stationary ion background, or Langmuir wave.
Returning to the 2-fluid model, we can simplify Eqs.(15-17) by
setting ui = 0, restricting the electron motion to one dimension
(x) and taking ∂

∂y = ∂
∂z = 0:

∂ne

∂t
+

∂

∂x
(neue) = 0

ne

(
∂ue

∂t
+ ue

∂ue

∂x

)
= − e

m
neE − 1

m
∂Pe

∂x
(20)

d
dt

(
Pe

nγe
e

)
= 0
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Longitudinal plasma waves (2)
Poisson’s equation

The above system (20) has 3 equations and 4 unknowns.

To close it we need an expression for the electric field, which,
since B = 0, can be found from Gauss’ law (Poisson’s equation)
with Zni = n0 = const:

∂E
∂x

=
e
ε0

(n0 − ne) (21)
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Longitudinal plasma waves (3)

1D electron fluid equations

∂ne

∂t
+

∂

∂x
(neue) = 0

ne

(
∂ue

∂t
+ ue

∂ue

∂x

)
= − e

m
neE − 1

m
∂Pe

∂x
(22)

d
dt

(
Pe

nγe
e

)
= 0

∂E
∂x

=
e
ε0

(n0 − ne)
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Longitudinal plasma waves (4)
Linearization

This system is nonlinear, and apart from a few special cases,
cannot be solved exactly. A common technique for analyzing
waves in plasmas therefore is to linearize the equations,
assuming the perturbed amplitudes are small compared to the
equilibrium values:

ne = n0 + n1,

ue = u1,

Pe = P0 + P1,

E = E1,

where n1 � n0,P1 � P0. These expressions are substituted
into (22) and all products n1∂tu1, u1∂xu1 etc. are neglected to
get a set of linear equations for the perturbed quantities...
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Linearized equations

Exercise

∂n1

∂t
+ n0

∂u1

∂x
= 0,

n0
∂u1

∂t
= − e

m
n0E1 −

1
m
∂P1

∂x
, (23)

∂E1

∂x
= − e

ε0
n1,

P1 = 3kBTen1.

N.B. Expression for P1 results from specific heat ratio γe = 3
and assuming isothermal background electrons, P0 = kBTen0

(ideal gas) – see Kruer (1988).
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Wave equation

We can now eliminate E1,P1 and u1 from (23) to get:(
∂2

∂t2 − 3v2
te
∂2

∂x2 + ω2
p

)
n1 = 0, (24)

with v2
te = kBTe/me and ωp given by (8) as before.

Finally, we look for plane wave solutions of the form
A = A0ei(ωt−kx), so that our derivative operators become:
∂
∂t → iω; ∂

∂x → −ik .

Substitution into (24) yields finally:
Bohm-Gross dispersion relation for electron plasma waves

ω2 = ω2
p + 3k2v2

te (25)
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Electromagnetic waves

To describe transverse electromagnetic (EM) waves, we need
two more of Maxwells equations: Faraday’s law (35) and
Ampère’s law (36), which we come to in their usual form later.
To simplify things, taking our cue from the previous analysis of
small-amplitude, longitudinal waves, we linearize and again
apply the harmonic approximation ∂

∂t → iω:

∇×E1 = −iωB1, (26)

∇×B1 = µ0J1 + iε0µ0ωE1, (27)

where the transverse current density is given by:

J1 = −n0eu1. (28)
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Electromagnetic waves (2)
Ohm’s law

We now look for pure EM plane-wave solutions with
E1 ⊥ k . Also note that the group and phase
velocities vp, vg � vte, so that we can assume a
cold plasma with Pe = n0kBTe = 0.

The linearized electron fluid velocity and corresponding current
are then:

u1 = − e
iωme

E1,

J1 =
n0e2

iωme
E1 ≡ σE1, (29)

where σ is the AC electrical conductivity.
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Electromagnetic waves (3)
Dielectric function

By analogy with dielectric media (see eg: Jackson), in which
Ampere’s law is usually written ∇×B1 = µ0∂tD1, by substituting
(29) into (36), can show that

D1 = ε0εE1

with

ε = 1 +
σ

iωε0
= 1−

ω2
p

ω2 . (30)
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Electromagnetic waves (4)
Refractive index

From (30) it follows immediately that:

Refractive index

η ≡
√
ε =

ck
ω

=

(
1−

ω2
p

ω2

)1/2

(31)

with

Dispersion relation

ω2 = ω2
p + c2k2 (32)

Exercise
The above expression can also be found directly by
elimination of J1 and B1 from Eqs. (26)-(29).
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Propagation characteristics
Underdense plasmas

From the dispersion relation (32) a number of important features
of EM wave propagation in plasmas can be deduced.

For underdense plasmas (ne � nc):

Phase velocity vp =
ω

k
' c

(
1 +

ω2
p

2ω2

)
> c

Group velocity vg =
∂ω

∂k
' c

(
1−

ω2
p

2ω2

)
< c
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Propagation characteristics (2)
Overdense plasmas

In the opposite case, ne > nc , the refractive index η becomes
imaginary, and the wave can no longer propagate, becoming
evanescent instead, with a decay length determined by the
collisionless skin depth c/ωp.
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Summary: dispersion curves

Wave propagation in plasmas Transverse waves 43 57

Nonlinear wave propagation

The starting point for most analyses of nonlinear wave
propagation phenomena is the Lorentz equation of motion for
the electrons in a cold (Te = 0), unmagnetized plasma, together
with Maxwell’s equations.

We also make two assumptions:

1 The ions are initially assumed to be singly charged (Z = 1)
and are treated as a immobile (vi = 0), homogeneous
background with n0 = Zni .

2 Thermal motion is neglected – justified for underdense
plasmas because the temperature remains small compared
to the typical oscillation energy in the laser field (vos � vte).
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Lorentz-Maxwell equations

Starting equations (SI units) are as follows

∂p
∂t

+ (v · ∇)p = −e(E + v × B), (33)

∇·E =
e
ε0

(n0 − ne), (34)

∇×E = −∂B
∂t
, (35)

c2∇×B = − e
ε0

nev +
∂E
∂t
, (36)

∇·B = 0, (37)

where p = γmev and γ = (1 + p2/m2
ec2)1/2.
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Electromagnetic waves

To simplify matters we first assume a plane-wave geometry like
that above, with the transverse electromagnetic fields given by
EL = (0,Ey , 0); BL = (0, 0,Bz).
From Eq. (33) the transverse electron momentum is
then simply given by:

py = eAy , (38)

where Ey = ∂Ay/∂t .

Exercise

This relation expresses conservation of canonical momentum.
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The EM wave equation I

Substitute E = −∇φ− ∂A/∂t ; B = ∇× A into Ampère Eq.(36):

c2∇× (∇× A) +
∂2A
∂t2 =

J
ε0
−∇∂φ

∂t
,

where the current J = −enev .
Now we use a bit of vectorial magic, splitting the current into
rotational (solenoidal) and irrotational (longitudinal) parts:

J = J⊥ + J || = ∇×Π +∇Ψ

from which we can deduce (see Jackson!):

J || −
1
c2∇

∂φ

∂t
= 0.
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The EM wave equation II

Now apply Coulomb gauge ∇ · A = 0 and vy = eAy/γ from (38),
to finally get:

EM wave

∂2Ay

∂t2 − c2∇2Ay = µ0Jy = − e2ne

ε0meγ
Ay . (39)

The nonlinear source term on the RHS contains two important
bits of physics:

ne = n0 + δn → Coupling to plasma waves

γ =
√

1 + p2/m2
ec2 → Relativistic effects
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Electrostatic (Langmuir) waves I

Taking the longitudinal (x)-component of the momentum
equation (33) gives:

d
dt

(γmevx ) = −eEx −
e2

2meγ

∂A2
y

∂x

We can eliminate vx using Ampère’s law (36)x :

0 = − e
ε0

nevx +
∂Ex

∂t
,

while the electron density can be determined via Poisson’s
equation (34):

ne = n0 −
ε0

e
∂Ex

∂x
.
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Electrostatic (Langmuir) waves II

The above (closed) set of equations can in principle be solved
numerically for arbitrary pump strengths. For the moment, we
simplify things by linearizing the plasma fluid quantities:

ne ' n0 + n1 + ...

vx ' v1 + v2 + ...

and neglect products like n1v1 etc. This finally leads to:

Driven plasma wave(
∂2

∂t2 +
ω2

p

γ0

)
Ex = −

ω2
pe

2meγ2
0

∂

∂x
A2

y (40)

The driving term on the RHS is the relativistic ponderomotive
force, with γ0 = (1 + a2

0/2)1/2.
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Cold plasma fluid equations: summary

Electromagnetic wave

∂2Ay

∂t2 − c2∇2Ay = µ0Jy = − e2ne

ε0meγ
Ay

Electrostatic (Langmuir) wave(
∂2

∂t2 +
ω2

p

γ0

)
Ex = −

ω2
pe

2meγ2
0

∂

∂x
A2

y

Wave propagation in plasmas Nonlinear wave propagation 51 57

Cold plasma fluid equations: outlook

These coupled fluid equations and their fully non-linear
variations describe a vast range of nonlinear laser-plasma
interaction phenomena:

plasma wake generation: Bingham, Assmann

blow-out regime: Silva

laser self-focussing and channelling: Najmudin, Cros

parametric instabilities

harmonic generation, ...

Plasma-accelerated particle beams, on the other hand, cannot
be treated with fluid theory and require a more sophisticated
kinetic approach. – see Pukhov
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Further reading

1 J. Boyd and J. J. Sanderson, The Physics of Plasmas

2 W. Kruer, The Physics of Laser Plasma Interactions,
Addison-Wesley, 1988

3 P. Gibbon, Short Pulse Laser Interactions with Matter: An
Introduction, Imperial College Press, 2005

4 J. D. Jackson, Classical Electrodynamics, Wiley 1975/1998

5 J. P. Dougherty in Chapter 3 of R. Dendy Plasma Physics,
1993
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Constants

Name Symbol Value (SI) Value (cgs)

Boltzmann constant kB 1.38× 10−23 JK−1 1.38× 10−16 erg K−1

Electron charge e 1.6× 10−19 C 4.8× 10−10 statcoul
Electron mass me 9.1× 10−31 kg 9.1× 10−28 g
Proton mass mp 1.67× 10−27 kg 1.67× 10−24 g
Planck constant h 6.63× 10−34 Js 6.63× 10−27 erg-s
Speed of light c 3× 108 ms−1 3× 1010 cms−1

Dielectric constant ε0 8.85× 10−12 Fm−1 —
Permeability constant µ0 4π × 10−7 —
Proton/electron mass ratio mp/me 1836 1836
Temperature = 1eV e/kB 11604 K 11604 K
Avogadro number NA 6.02× 1023 mol−1 6.02× 1023 mol−1

Atmospheric pressure 1 atm 1.013× 105 Pa 1.013× 106 dyne cm−2
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Formulae
Name Symbol Formula (SI) Formula (cgs)

Debye length λD

(
ε0kBTe

e2ne

) 1
2

m
(

kBTe

4πe2ne

) 1
2

cm

Particles in Debye sphere ND
4π

3
λ

3
D

4π

3
λ

3
D

Plasma frequency (electrons) ωpe

(
e2ne

ε0me

) 1
2

s−1

(
4πe2ne

me

) 1
2

s−1

Plasma frequency (ions) ωpi

(
Z 2e2ni

ε0mi

) 1
2

s−1

(
4πZ 2e2ni

mi

) 1
2

s−1

Thermal velocity vte = ωpeλD

(
kBTe

me

) 1
2

ms−1
(

kBTe

me

) 1
2

cms−1

Electron gyrofrequency ωc eB/me s−1 eB/me s−1

Electron-ion collision frequency νei
π

3
2 neZe4 ln Λ

2
1
2 (4πε0)2m2

ev3
te

s−1 4(2π)
1
2 neZe4 ln Λ

3m2
ev3

te

s−1

Coulomb-logarithm ln Λ ln
9ND

Z
ln

9ND

Z
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Useful formulae

Plasmafrequency ωpe = 5.64× 104n
1
2
e s−1

Critical density nc = 1021λ−2
L cm−3

Debye length λD = 743 T
1
2

e n
− 1

2
e cm

Skin depth δ = c/ωp = 5.31× 105n
− 1

2
e cm

Elektron-ion collision frequency νei = 2.9× 10−6neT
− 3

2
e ln Λ s−1

Ion-ion collision frequency νii = 4.8× 10−8Z 4
(

mp

mi

) 1
2

ni T
− 3

2
i ln Λ s−1

Quiver amplitude a0 ≡
posc

mec
=

(
Iλ2

L

1.37× 1018Wcm−2µm2

) 1
2

Relativistic focussing threshold Pc = 17
(

nc

ne

)
GW

Te in eV; ne, ni in cm−3, wavelength λL in µm
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Maxwell’s Equations

Name (SI) (cgs)

Gauss’ law ∇.E = ρ/ε0 ∇.E = 4πρ

Gauss’ magnetism law ∇.B = 0 ∇.B = 0

Ampère ∇× B = µ0J +
1
c2

∂E
∂t

∇× B =
4π
c

J +
1
c
∂E
∂t

Faraday ∇× E = −
∂B
∂t

∇× E = −
1
c
∂B
∂t

Lorentz force E + v × B E +
1
c

v × B

per unit charge
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