

Introduction to Plasma Physics

CERN School on Plasma Wave Acceleration

24-29 November 2014 | Paul Gibbon

Outline

- Lecture 1: Introduction Definitions and Concepts
- Lecture 2: Wave Propagation in Plasmas

Lecture 1: Introduction

Plasma definition

Plasma types

Debye shielding

Plasma oscillations

Plasma creation: field ionization

Relativistic threshold

Further reading

Introduction 3 | 57

What is a plasma?

Simple definition: a *quasi-neutral* gas of charged particles showing *collective behaviour*.

Quasi-neutrality: number densities of electrons, n_e , and ions, n_i , with charge state Z are *locally balanced*:

$$n_e \simeq Z n_i$$
. (1)

Collective behaviour: long range of Coulomb potential (1/r) leads to nonlocal influence of disturbances in equilibrium.

Macroscopic fields usually dominate over microscopic fluctuations, e.g.:

$$\rho = e(Zn_i - n_e) \Rightarrow \nabla \cdot \mathbf{E} = \rho/\varepsilon_0$$

Introduction Plasma definition 4 | 57

Where are plasmas found?

- 1 cosmos (99% of visible universe):
 - interstellar medium (ISM)
 - stars
 - jets
- 2 ionosphere:
 - ≤ 50 km = 10 Earth-radii
 - long-wave radio
- 3 Earth:
 - fusion devices
 - street lighting
 - plasma torches
 - discharges lightning
 - plasma accelerators!

Introduction Plasma types 5 | 57

Plasma properties

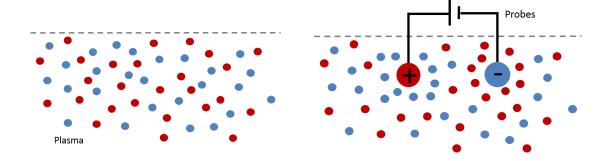
Туре	Electron density n_e (cm ⁻³)	Temperature T_e (eV*)
	4.026	0 403
Stars	10 ²⁶	2×10^3
Laser fusion	10 ²⁵	$3 imes 10^3$
Magnetic fusion	10 ¹⁵	10 ³
Laser-produced	$10^{18} - 10^{24}$	$10^2 - 10^3$
Discharges	10 ¹²	1-10
Ionosphere	10 ⁶	0.1
ISM	1	10^{-2}

Table 1: Densities and temperatures of various plasma types

* $1eV \equiv 11600K$

Introduction Plasma types 6 | 57

Debye shielding



What is the potential $\phi(r)$ of an ion (or positively charged sphere) immersed in a plasma?

Introduction Debye shielding 7 | 57

Debye shielding (2): ions vs electrons

For equal ion and electron temperatures ($T_e = T_i$), we have:

$$\frac{1}{2}m_{e}v_{e}^{2} = \frac{1}{2}m_{i}v_{i}^{2} = \frac{3}{2}k_{B}T_{e}$$
 (2)

Therefore,

$$\frac{v_i}{v_e} = \left(\frac{m_e}{m_i}\right)^{1/2} = \left(\frac{m_e}{Am_p}\right)^{1/2} = \frac{1}{43}$$
 (hydrogen, Z=A=1)

Ions are almost stationary on electron timescale! To a good approximation, we can often write:

$$n_i \simeq n_0$$
,

where the material (eg gas) number density, $n_0 = N_A \rho_m / A$.

Introduction Debye shielding 8 | 57

Debye shielding (3)

In thermal equilibrium, the electron density follows a Boltzmann distribution*:

$$n_e = n_i \exp(e\phi/k_B T_e) \tag{3}$$

where n_i is the ion density and k_B is the Boltzmann constant.

From Gauss' law (Poisson's equation):

$$\nabla^2 \phi = -\frac{\rho}{\varepsilon_0} = -\frac{\mathbf{e}}{\varepsilon_0} (n_i - n_{\mathbf{e}}) \tag{4}$$

* See, eg: F. F. Chen, p. 9

Introduction Debye shielding 9 | 57

Debye shielding (4)

Combining (4) with (3) in spherical geometry^a and requiring $\phi \to 0$ at $r = \infty$, get solution:

Exercise

$$\phi_D = \frac{1}{4\pi\varepsilon_0} \frac{e^{-r/\lambda_D}}{r}.$$
 (5)

with

Debye length

$$\lambda_D = \left(\frac{\varepsilon_0 k_B T_e}{e^2 n_e}\right)^{1/2} = 743 \left(\frac{T_e}{\text{eV}}\right)^{1/2} \left(\frac{n_e}{\text{cm}^{-3}}\right)^{-1/2} \text{cm} \qquad (6)$$

$$a\nabla^2
ightarrow rac{1}{r^2} rac{d}{dr} (r^2 rac{d\phi}{dr})$$

Introduction Debye shielding 10 | 57

Debye sphere

An ideal plasma has many particles per Debye sphere:

$$N_D \equiv n_e \frac{4\pi}{3} \lambda_D^3 \gg 1. \tag{7}$$

⇒ Prerequisite for collective behaviour.

Alternatively, can define plasma parameter:

$$g \equiv \frac{1}{n_e \lambda_D^3}$$

Classical plasma theory based on assumption that $g \ll 1$, which also implies dominance of collective effects over collisions between particles.

Introduction Debye shielding 11 | 57

Collisions in plasmas

At the other extreme, where $N_D \leq 1$, screening effects are reduced and collisions will dominate the particle dynamics. A good measure of this is the *electron-ion collision rate*, given by:

$$u_{ei} = rac{\pi^{rac{3}{2}} n_{e} Z e^{4} \ln \Lambda}{2^{rac{1}{2}} (4\pi \varepsilon_{0})^{2} m_{e}^{2} v_{te}^{3}} \mathrm{s}^{-1}$$

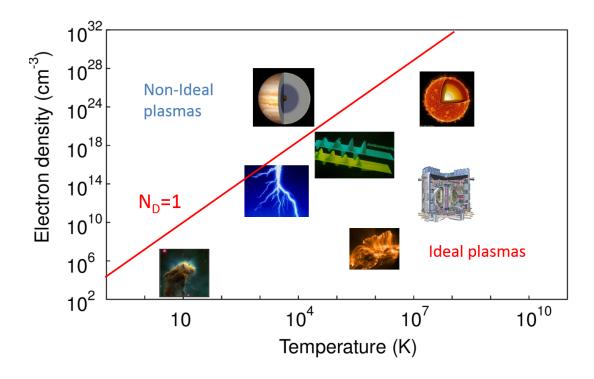
 $v_{te} \equiv \sqrt{k_B T_e/m_e}$ is the electron thermal velocity and $\ln \Lambda$ is a slowly varying term (Coulomb logarithm) O(10-20).

Can show that

$$rac{
u_{ei}}{\omega_p} \simeq rac{Z \ln \Lambda}{10 N_D}; \; ext{ with } \; \ln \Lambda \simeq 9 N_D/Z$$

Introduction Debye shielding 12 | 57

Plasma classification



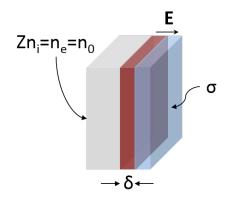
Introduction Debye shielding 13 | 57

Model hierarchy

- 1 First principles N-body molecular dynamics
- Phase-space methods Vlasov-Boltzmann
- 3 2-fluid equations
- 4 Magnetohydrodynamics (single, magnetised fluid)
- Time-scales: 10⁻¹⁵ 10³ s
- Length-scales: 10⁻⁹ 10 m
- Number of particles needed for first-principles modelling (1): 10²¹ (tokamak), 10²⁰ (laser-heated solid)

Introduction Debye shielding 14 | 57

Plasma oscillations: capacitor model



Consider electron layer displaced from plasma slab by length δ . This creates two 'capacitor' plates with surface charge $\sigma = \pm e n_e \delta$, resulting in an electric field:

$$m{E} = rac{\sigma}{arepsilon_0} = rac{e n_e \delta}{arepsilon_0}$$

Introduction Plasma oscillations 15 | 57

Capacitor model (2)

The electron layer is accelerated back towards the slab by this restoring force according to:

$$m_e \frac{dv}{dt} = -m_e \frac{d^2 \delta}{dt^2} = -eE = \frac{e^2 n_e \delta}{\varepsilon_0}$$

Or:

$$\frac{d^2\delta}{dt^2} + \omega_p^2 \delta = 0,$$

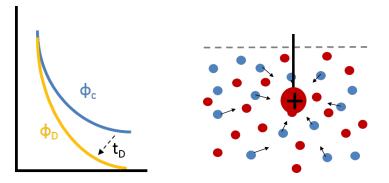
where

Electron plasma frequency

$$\omega_p \equiv \left(\frac{e^2 n_e}{\varepsilon_0 m_e}\right)^{1/2} \simeq 5.6 \times 10^4 \left(\frac{n_e}{\text{cm}^{-3}}\right)^{1/2} \text{s}^{-1}. \tag{8}$$

Introduction Plasma oscillations 16 57

Response time to create Debye sheath



For a plasma with temperature T_e (and thermal velocity $v_{te} \equiv \sqrt{k_B T_e/m_e}$), one can also define a characteristic *reponse* time to recover quasi-neutrality:

$$t_D \simeq rac{\lambda_D}{v_{te}} = \left(rac{arepsilon_0 k_B T_e}{e^2 n_e} \cdot rac{m}{k_B T_e}
ight)^{1/2} = \omega_p^{-1}.$$

Introduction Plasma oscillations 17 | 57

External fields: underdense vs. overdense

If the plasma response time is shorter than the period of a external electromagnetic field (such as a laser), then this radiation will be *shielded out*.

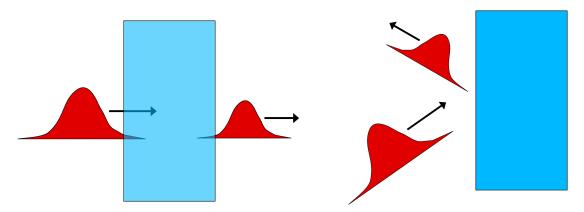


Figure 1: Underdense, $\omega > \omega_p$: plasma acts as nonlinear refractive medium

Figure 2: Overdense, $\omega < \omega_p$: plasma acts like mirror

Introduction Plasma oscillations 18 57

The critical density

To make this more quantitative, consider ratio:

$$\frac{\omega_p^2}{\omega^2} = \frac{e^2 n_e}{\varepsilon_0 m_e} \cdot \frac{\lambda^2}{4\pi^2 c^2}.$$

Setting this to unity defines the wavelength for which $n_e = n_c$, or the

Critical density

$$n_c \simeq 10^{21} \lambda_{\mu}^{-2} \text{ cm}^{-3}$$
 (9)

above which radiation with wavelengths $\lambda>\lambda_{\mu}$ will be reflected. cf: radio waves from ionosphere.

Introduction Plasma oscillations 19 57

Plasma creation: field ionization

At the Bohr radius

$$a_B = \frac{\hbar^2}{me^2} = 5.3 \times 10^{-9} \text{ cm},$$

the electric field strength is:

$$E_a = \frac{e}{4\pi\varepsilon_0 a_B^2}$$

$$\simeq 5.1 \times 10^9 \text{ Vm}^{-1}. \tag{10}$$

This leads to the atomic intensity:

$$I_a = \frac{\varepsilon_0 c E_a^2}{2}$$

$$\simeq 3.51 \times 10^{16} \text{ Wcm}^{-2}. \tag{11}$$

A laser intensity of $I_L > I_a$ will *guarantee ionization* for any target material, though in fact this can occur well below this threshold value (eg: $\sim 10^{14}~{\rm Wcm^{-2}}$ for hydrogen) via *multiphoton* effects .

Introduction Plasma creation: field ionization 20 | 57

Ionized gases: when is plasma response important?

Simultaneous field ionization of many atoms produces a plasma with electron density n_e , temperature $T_e \sim 1-10$ eV. *Collective effects* important if

$$\omega_p \tau_{
m interaction} > 1$$

Example (Gas jet)

 $au_{
m int}=$ 100 fs, $n_e=$ 10¹⁷ cm⁻³ $ightarrow \omega_p au_{
m int}=$ 1.8 Typical gas jets: $P\sim$ 1bar; $n_e=$ 10¹⁸ - 10¹⁹ cm⁻³ Recall that from Eq.9, critical density for glass laser $n_c(1\mu)=$ 10²¹ cm⁻³. Gas-jet plasmas are therefore underdense, since $\omega^2/\omega_p^2=n_e/n_c\ll$ 1.

Exploit plasma effects for: short-wavelength radiation; nonlinear refractive properties; high electric/magnetic fields; *particle acceleration*!

Introduction Plasma creation: field ionization 21 | 57

Relativistic field strengths

Classical equation of motion for an electron exposed to a linearly polarized laser field $\mathbf{E} = \hat{\mathbf{y}} E_0 \sin \omega t$:

$$\frac{dv}{dt} \simeq \frac{-eE_0}{m_e} \sin \omega t$$

$$\rightarrow v = \frac{eE_0}{m_e\omega}\cos\omega t = v_{\rm os}\cos\omega t \tag{12}$$

Dimensionless oscillation amplitude, or 'quiver' velocity:

$$a_0 \equiv \frac{v_{\rm os}}{c} \equiv \frac{p_{\rm os}}{m_e c} \equiv \frac{eE_0}{m_e \omega c}$$
 (13)

Introduction Relativistic threshold 22 | 57

Relativistic intensity

The laser intensity I_L and wavelength λ_L are related to E_0 and ω by:

$$I_L = \frac{1}{2} \varepsilon_0 c E_0^2; \quad \lambda_L = \frac{2\pi c}{\omega}$$

Substituting these into (13) we find:

$$a_0 \simeq 0.85 (I_{18} \lambda_{\mu}^2)^{1/2},$$
 (14)

where

Exercise

$$I_{18} = \frac{I_L}{10^{18} \text{ Wcm}^{-2}}; \ \ \lambda_{\mu} = \frac{\lambda_L}{\mu m}.$$

Implies that for $I_L \ge 10^{18} \ {\rm Wcm^{-2}}$, $\lambda_L \simeq 1 \ \mu {\rm m}$, we will have relativistic electron velocities, or $a_0 \sim 1$.

Introduction Relativistic threshold 23 | 57

Further reading

- 1 F. F. Chen, *Plasma Physics and Controlled Fusion*, 2nd Ed. (Springer, 2006)
- 2 R.O. Dendy (ed.), *Plasma Physics, An Introductory Course*, (Cambridge University Press, 1993)
- 3 J. D. Huba, NRL Plasma Formulary, (NRL, Washington DC, 2007) http://www.nrl.navy.mil/ppd/content/nrl-plasma-formulary

Introduction Further reading 24 | 57

Lecture 2: Wave propagation in plasmas

Plasma oscillations

Transverse waves

Nonlinear wave propagation

Further reading

Formulary

Wave propagation in plasmas

25 | 57

Model hierarchy

- First principles N-body molecular dynamics
- Phase-space methods Vlasov-Boltzmann
- 3 2-fluid equations
- 4 Magnetohydrodynamics (single, magnetised fluid)

The 2-fluid model

Many plasma phenomena can be analysed by assuming that each charged particle component with density n_s and velocity u_s behaves in a fluid-like manner, interacting with other species (s) via the electric and magnetic fields. The rigorous way to derive the governing equations in this approximation is via *kinetic theory*, which is beyond the scope of this lecture.

We therefore begin with the 2-fluid equations for a plasma assumed to be:

• thermal: $T_e > 0$

• collisionless: $u_{\mathsf{ie}} \simeq \mathsf{0}$

• and non-relativistic: velocities $u \ll c$.

Wave propagation in plasmas

Plasma oscillations

27 | 57

The 2-fluid model (2)

$$\frac{\partial n_s}{\partial t} + \nabla \cdot (n_s \boldsymbol{u}_s) = 0 \tag{15}$$

$$n_s m_s \frac{d \boldsymbol{u}_s}{dt} = n_s q_s (\boldsymbol{E} + \boldsymbol{u}_s \times \boldsymbol{B}) - \nabla P_s$$
 (16)

$$\frac{d}{dt}(P_s n_s^{-\gamma_s}) = 0 (17)$$

 P_s is the thermal pressure of species s; γ_s the specific heat ratio, or (2 + N)/N, where N is the number of degrees of freedom.

Continuity equation

The continuity equation (Eq. 15) tells us that (in the absence of ionization or recombination) the number of particles *of each* species is conserved.

Noting that the charge and current densities can be written $\rho_s = q_s n_s$ and $\boldsymbol{J}_s = q_s n_s \boldsymbol{u}_s$ respectively, Eq. (15) can also be written:

$$\frac{\partial \rho_{s}}{\partial t} + \nabla \cdot \boldsymbol{J}_{s} = 0, \tag{18}$$

which expresses the conservation of charge.

Wave propagation in plasmas

Plasma oscillations

29 | 57

Momentum equation

(Eq. 16) governs the motion of a fluid element of species *s* in the presence of electric and magnetic fields *E* and *B*.

Remark: In the absence of fields, and assuming strict quasineutrality ($n_e = Zn_i = n$; $\mathbf{u}_e = \mathbf{u}_i = \mathbf{u}$), we recover the *Navier-Stokes* equations. Exercise

In the plasma accelerator context we will usually deal with un magnetised plasmas, and stationary ions $\mathbf{u}_i = 0$, in which case the momentum equation reads:

$$n_e m_e \frac{d \boldsymbol{u}_e}{dt} = -e n_e \boldsymbol{E} - \nabla P_e$$
 (19)

Note that *E* can include both external and internal field components (via charge-separation).

Longitudinal plasma waves

A characteristic property of plasmas is their ability to transfer momentum and energy via collective motion. One of the most important examples of this is the oscillation of the electrons against a stationary ion background, or *Langmuir wave*. Returning to the 2-fluid model, we can simplify Eqs.(15-17) by setting $\mathbf{u}_i = 0$, restricting the electron motion to one dimension (x) and taking $\frac{\partial}{\partial y} = \frac{\partial}{\partial z} = 0$:

$$\frac{\partial n_{e}}{\partial t} + \frac{\partial}{\partial x}(n_{e}u_{e}) = 0$$

$$n_{e}\left(\frac{\partial u_{e}}{\partial t} + u_{e}\frac{\partial u_{e}}{\partial x}\right) = -\frac{e}{m}n_{e}E - \frac{1}{m}\frac{\partial P_{e}}{\partial x}$$

$$\frac{d}{dt}\left(\frac{P_{e}}{n_{e}^{\gamma_{e}}}\right) = 0$$
(20)

Wave propagation in plasmas

Plasma oscillations

31 | 57

Longitudinal plasma waves (2)

Poisson's equation

The above system (20) has 3 equations and 4 unknowns.

To close it we need an expression for the electric field, which, since $\mathbf{B} = 0$, can be found from Gauss' law (Poisson's equation) with $Zn_i = n_0 = \text{const}$:

$$\frac{\partial E}{\partial x} = \frac{e}{\varepsilon_0} (n_0 - n_e) \tag{21}$$

Longitudinal plasma waves (3)

1D electron fluid equations

$$\frac{\partial n_{e}}{\partial t} + \frac{\partial}{\partial x}(n_{e}u_{e}) = 0$$

$$n_{e}\left(\frac{\partial u_{e}}{\partial t} + u_{e}\frac{\partial u_{e}}{\partial x}\right) = -\frac{e}{m}n_{e}E - \frac{1}{m}\frac{\partial P_{e}}{\partial x} \qquad (22)$$

$$\frac{d}{dt}\left(\frac{P_{e}}{n_{e}^{\gamma_{e}}}\right) = 0$$

$$\frac{\partial E}{\partial x} = \frac{e}{\varepsilon_{0}}(n_{0} - n_{e})$$

Wave propagation in plasmas

Plasma oscillations

33 | 57

Longitudinal plasma waves (4)

Linearization

This system is nonlinear, and apart from a few special cases, cannot be solved exactly. A common technique for analyzing waves in plasmas therefore is to *linearize* the equations, assuming the perturbed amplitudes are small compared to the equilibrium values:

$$n_e = n_0 + n_1,$$

 $u_e = u_1,$
 $P_e = P_0 + P_1,$
 $E = E_1,$

where $n_1 \ll n_0$, $P_1 \ll P_0$. These expressions are substituted into (22) and all products $n_1 \partial_t u_1$, $u_1 \partial_x u_1$ etc. are neglected to get a set of linear equations for the perturbed quantities...

Linearized equations

 $\frac{\partial n_1}{\partial t} + n_0 \frac{\partial u_1}{\partial x} = 0,$ $n_0 \frac{\partial u_1}{\partial t} = -\frac{e}{m} n_0 E_1 - \frac{1}{m} \frac{\partial P_1}{\partial x}, \quad (23)$ $\frac{\partial E_1}{\partial x} = -\frac{e}{\varepsilon_0} n_1,$

Exercise

$$P_1 = 3k_BT_en_1$$
.

N.B. Expression for P_1 results from specific heat ratio $\gamma_e = 3$ and assuming isothermal background electrons, $P_0 = k_B T_e n_0$ (ideal gas) – see Kruer (1988).

Wave propagation in plasmas

Plasma oscillations

35 | 57

Wave equation

We can now eliminate E_1 , P_1 and u_1 from (23) to get:

$$\left(\frac{\partial^2}{\partial t^2} - 3v_{te}^2 \frac{\partial^2}{\partial x^2} + \omega_p^2\right) n_1 = 0, \tag{24}$$

with $v_{te}^2 = k_B T_e/m_e$ and ω_p given by (8) as before.

Finally, we look for plane wave solutions of the form $A = A_0 e^{i(\omega t - kx)}$, so that our derivative operators become: $\frac{\partial}{\partial t} \to i\omega$; $\frac{\partial}{\partial x} \to -ik$.

Substitution into (24) yields finally:

Bohm-Gross dispersion relation for electron plasma waves

$$\omega^2 = \omega_p^2 + 3k^2v_{te}^2 \tag{25}$$

Electromagnetic waves

To describe *transverse* electromagnetic (EM) waves, we need two more of Maxwells equations: Faraday's law (35) and Ampère's law (36), which we come to in their usual form later.

To simplify things, taking our cue from the previous analysis of small-amplitude, longitudinal waves, we linearize and again apply the harmonic approximation $\frac{\partial}{\partial t} \to i\omega$:

$$\nabla \times \boldsymbol{E}_1 = -i\omega \boldsymbol{B}_1, \tag{26}$$

$$\nabla \times \boldsymbol{B}_1 = \mu_0 \boldsymbol{J}_1 + i \varepsilon_0 \mu_0 \omega \boldsymbol{E}_1, \qquad (27)$$

where the transverse current density is given by:

$$\boldsymbol{J}_1 = -n_0 e \boldsymbol{u}_1. \tag{28}$$

Wave propagation in plasmas

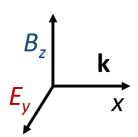
Transverse waves

37 | 57

Electromagnetic waves (2)

Ohm's law

We now look for pure EM plane-wave solutions with $E_1 \perp k$. Also note that the group and phase velocities v_p , $v_g \gg v_{te}$, so that we can assume a *cold* plasma with $P_e = n_0 k_B T_e = 0$.



The linearized electron fluid velocity and corresponding current are then:

$$m{u}_1 = -rac{e}{i\omega m_e} m{E}_1,$$
 $m{J}_1 = rac{n_0 e^2}{i\omega m_e} m{E}_1 \equiv \sigma m{E}_1,$ (29)

where σ is the AC electrical conductivity.

Electromagnetic waves (3)

Dielectric function

By analogy with dielectric media (see eg: Jackson), in which Ampere's law is usually written $\nabla \times \boldsymbol{B}_1 = \mu_0 \partial_t \boldsymbol{D}_1$, by substituting (29) into (36), can show that

$$D_1 = \varepsilon_0 \varepsilon E_1$$

with

$$\varepsilon = 1 + \frac{\sigma}{i\omega\varepsilon_0} = 1 - \frac{\omega_p^2}{\omega^2}.$$
 (30)

Wave propagation in plasmas

Transverse waves

39 57

Electromagnetic waves (4)

Refractive index

From (30) it follows immediately that:

Refractive index

$$\eta \equiv \sqrt{\varepsilon} = \frac{ck}{\omega} = \left(1 - \frac{\omega_p^2}{\omega^2}\right)^{1/2}$$
(31)

with

Dispersion relation

$$\omega^2 = \omega_p^2 + c^2 k^2 \tag{32}$$

Exercise

The above expression can also be found directly by elimination of J_1 and B_1 from Eqs. (26)-(29).

Propagation characteristics

Underdense plasmas

From the dispersion relation (32) a number of important features of EM wave propagation in plasmas can be deduced.

For *underdense* plasmas ($n_e \ll n_c$):

Phase velocity
$$v_p = \frac{\omega}{k} \simeq c \left(1 + \frac{\omega_p^2}{2\omega^2} \right) > c$$

Group velocity
$$v_g = \frac{\partial \omega}{\partial k} \simeq c \left(1 - \frac{\omega_p^2}{2\omega^2} \right) < c$$

Wave propagation in plasmas

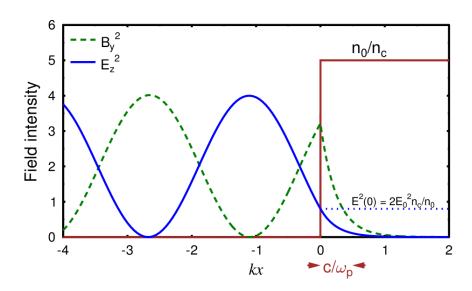
Transverse waves

41 | 57

Propagation characteristics (2)

Overdense plasmas

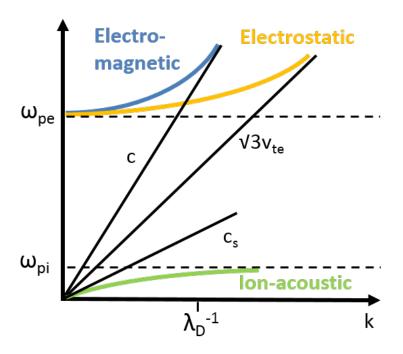
In the opposite case, $n_e > n_c$, the refractive index η becomes imaginary, and the wave can no longer propagate, becoming evanescent instead, with a decay length determined by the collisionless skin depth c/ω_p .



Wave propagation in plasmas

Transverse waves

Summary: dispersion curves



Wave propagation in plasmas

Transverse waves

43 57

Nonlinear wave propagation

The starting point for most analyses of nonlinear wave propagation phenomena is the Lorentz equation of motion for the electrons in a cold ($T_e = 0$), unmagnetized plasma, together with Maxwell's equations.

We also make two assumptions:

- 11 The ions are initially assumed to be singly charged (Z = 1) and are treated as a immobile ($v_i = 0$), homogeneous background with $n_0 = Zn_i$.
- Thermal motion is neglected justified for underdense plasmas because the temperature remains small compared to the typical oscillation energy in the laser field ($v_{os} \gg v_{te}$).

Lorentz-Maxwell equations

Starting equations (SI units) are as follows

$$\frac{\partial \boldsymbol{p}}{\partial t} + (\boldsymbol{v} \cdot \nabla) \boldsymbol{p} = -e(\boldsymbol{E} + \boldsymbol{v} \times \boldsymbol{B}), \tag{33}$$

$$\nabla \cdot \mathbf{E} = \frac{e}{\varepsilon_0} (n_0 - n_e), \qquad (34)$$

$$\nabla \times \mathbf{E} = -\frac{\partial \mathbf{B}}{\partial t}, \tag{35}$$

$$\nabla \times \mathbf{E} = -\frac{\partial \mathbf{B}}{\partial t}, \qquad (35)$$

$$c^{2} \nabla \times \mathbf{B} = -\frac{e}{\varepsilon_{0}} n_{e} \mathbf{v} + \frac{\partial \mathbf{E}}{\partial t}, \qquad (36)$$

$$\nabla \cdot \mathbf{B} = 0, \tag{37}$$

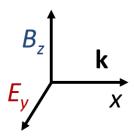
where $p = \gamma m_e v$ and $\gamma = (1 + p^2/m_e^2 c^2)^{1/2}$.

Wave propagation in plasmas

Nonlinear wave propagation

45 57

Electromagnetic waves



To simplify matters we first assume a plane-wave geometry like that above, with the transverse electromagnetic fields given by $\boldsymbol{E}_{L} = (0, E_{V}, 0); \boldsymbol{B}_{L} = (0, 0, B_{Z}).$

From Eq. (33) the transverse electron momentum is then simply given by:

$$p_{y} = eA_{y}, \tag{38}$$

Exercise

where $E_{v} = \partial A_{v}/\partial t$.

This relation expresses conservation of canonical momentum.

Wave propagation in plasmas

Nonlinear wave propagation

46 57

The EM wave equation I

Substitute $\mathbf{E} = -\nabla \phi - \partial \mathbf{A}/\partial t$; $\mathbf{B} = \nabla \times \mathbf{A}$ into Ampère Eq.(36):

$$c^2
abla imes (
abla imes m{A}) + rac{\partial^2m{A}}{\partial t^2} = rac{m{J}}{arepsilon_0} -
ablarac{\partial\phi}{\partial t},$$

where the current $\mathbf{J} = -e n_e \mathbf{v}$.

Now we use a bit of vectorial magic, splitting the current into rotational (solenoidal) and irrotational (longitudinal) parts:

$$oldsymbol{J} = oldsymbol{J}_{\perp} + oldsymbol{J}_{||} =
abla imes oldsymbol{\Pi} +
abla \Psi$$

from which we can deduce (see Jackson!):

$$|m{J}_{||} - rac{1}{c^2}
abla rac{\partial \phi}{\partial t} = 0.$$

Wave propagation in plasmas

Nonlinear wave propagation

47 | 57

The EM wave equation II

Now apply Coulomb gauge $\nabla \cdot \mathbf{A} = 0$ and $v_y = eA_y/\gamma$ from (38), to finally get:

EM wave

$$\frac{\partial^2 A_y}{\partial t^2} - c^2 \nabla^2 A_y = \mu_0 J_y = -\frac{e^2 n_e}{\varepsilon_0 m_e \gamma} A_y. \tag{39}$$

The nonlinear source term on the RHS contains two important bits of physics:

$$n_e = n_0 + \delta n \ o \ ext{Coupling to plasma waves}$$

$$\gamma = \sqrt{1 + {m p}^2/m_e^2c^2} ~
ightarrow {
m Relativistic}$$
 effects

Wave propagation in plasmas

Nonlinear wave propagation

48 | 57

Electrostatic (Langmuir) waves I

Taking the *longitudinal* (x)-component of the momentum equation (33) gives:

$$\frac{d}{dt}(\gamma m_{e}v_{x}) = -eE_{x} - \frac{e^{2}}{2m_{e}\gamma}\frac{\partial A_{y}^{2}}{\partial x}$$

We can eliminate v_x using Ampère's law (36)_x:

$$0 = -\frac{e}{\varepsilon_0} n_e v_x + \frac{\partial E_x}{\partial t},$$

while the electron density can be determined via Poisson's equation (34):

$$n_e = n_0 - \frac{\varepsilon_0}{e} \frac{\partial E_x}{\partial x}$$

Wave propagation in plasmas

Nonlinear wave propagation

49 | 57

Electrostatic (Langmuir) waves II

The above (closed) set of equations can in principle be solved numerically for arbitrary pump strengths. For the moment, we simplify things by linearizing the *plasma* fluid quantities:

$$n_e \simeq n_0 + n_1 + \dots$$

 $v_x \simeq v_1 + v_2 + \dots$

and neglect products like $n_1 v_1$ etc. This finally leads to:

Driven plasma wave

$$\left(\frac{\partial^2}{\partial t^2} + \frac{\omega_p^2}{\gamma_0}\right) E_x = -\frac{\omega_p^2 e}{2m_e \gamma_0^2} \frac{\partial}{\partial x} A_y^2 \tag{40}$$

The driving term on the RHS is the *relativistic ponderomotive* force, with $\gamma_0 = (1 + a_0^2/2)^{1/2}$.

Wave propagation in plasmas

Nonlinear wave propagation

Cold plasma fluid equations: summary

Electromagnetic wave

$$\frac{\partial^2 A_y}{\partial t^2} - c^2 \nabla^2 A_y = \mu_0 J_y = -\frac{e^2 n_e}{\varepsilon_0 m_e \gamma} A_y$$

Electrostatic (Langmuir) wave

$$\left(\frac{\partial^2}{\partial t^2} + \frac{\omega_p^2}{\gamma_0}\right) E_x = -\frac{\omega_p^2 e}{2m_e \gamma_0^2} \frac{\partial}{\partial x} A_y^2$$

Wave propagation in plasmas

Nonlinear wave propagation

51 | 57

Cold plasma fluid equations: outlook

These coupled fluid equations and their fully non-linear variations describe a vast range of nonlinear laser-plasma interaction phenomena:

- plasma wake generation: Bingham, Assmann
- blow-out regime: Silva
- laser self-focussing and channelling: Najmudin, Cros
- parametric instabilities
- harmonic generation, ...

Plasma-accelerated particle *beams*, on the other hand, cannot be treated with fluid theory and require a more sophisticated kinetic approach. – see Pukhov

Further reading

- 1 J. Boyd and J. J. Sanderson, The Physics of Plasmas
- 2 W. Kruer, *The Physics of Laser Plasma Interactions*, Addison-Wesley, 1988
- 3 P. Gibbon, Short Pulse Laser Interactions with Matter: An Introduction, Imperial College Press, 2005
- 4 J. D. Jackson, Classical Electrodynamics, Wiley 1975/1998
- J. P. Dougherty in Chapter 3 of R. Dendy *Plasma Physics*, 1993

Wave propagation in plasmas Further reading 53 | 57

Constants

Name	Symbol	Value (SI)	Value (cgs)
Boltzmann constant	k _B	$1.38 \times 10^{-23} \mathrm{JK^{-1}}$	$1.38 imes 10^{-16} \ erg \ K^{-1}$
Electron charge	e	$1.6 \times 10^{-19} \text{ C}$	4.8×10^{-10} statcoul
Electron mass	m _e	$9.1 \times 10^{-31} \text{ kg}$	$9.1 \times 10^{-28} \mathrm{g}$
Proton mass	m_p	$1.67 imes 10^{-27} ext{ kg}$	$1.67 \times 10^{-24} \text{ g}$
Planck constant	h	$6.63 imes 10^{-34} \mathrm{Js}$	$6.63 imes 10^{-27} ext{ erg-s}$
Speed of light	С	$3 imes 10^8 \ \text{ms}^{-1}$	$3 \times 10^{10} \ \text{cms}^{-1}$
Dielectric constant	$arepsilon_0$	$8.85 \times 10^{-12} \mathrm{Fm}^{-1}$	_
Permeability constant	μ_{0}	$4\pi imes 10^{-7}$	_
Proton/electron mass ratio	m_p/m_e	1836	1836
Temperature = 1eV	e/k _B	11604 K	11604 K
Avogadro number	N_A	$6.02 imes 10^{23} \; ext{mol}^{-1}$	$6.02 imes 10^{23} ext{ mol}^{-1}$
Atmospheric pressure	1 atm	$1.013 \times 10^{5} \text{ Pa}$	$1.013 imes 10^6 ext{ dyne cm}^{-2}$

Formulae

Name	Symbol	Formula (SI)	Formula (cgs)
Debye length	λ_{D}	$\left(\frac{\varepsilon_0 k_B T_e}{e^2 n_e}\right)^{\frac{1}{2}} m$	$\left(\frac{k_{\rm B}T_{\rm e}}{4\pi{\rm e}^2n_{\rm e}}\right)^{\frac{1}{2}}{\rm cm}$
Particles in Debye sphere	N_D	$\frac{4\pi}{3}\lambda_D^3$	$\frac{4\pi}{3}\lambda_D^3$
Plasma frequency (electrons)	$\omega_{ extit{pe}}$	$\left(\frac{e^2 n_e}{\varepsilon_0 m_e}\right)^{\frac{1}{2}} s^{-1}$	$\left(\frac{4\pi e^2 n_e}{m_e}\right)^{\frac{1}{2}} s^{-1}$
Plasma frequency (ions)	$\omega_{ extit{pi}}$	$\left(\frac{Z^2 e^2 n_i}{\varepsilon_0 m_i}\right)^{\frac{1}{2}} s^{-1}$	$\left(\frac{4\pi Z^2 e^2 n_i}{m_i}\right)^{\frac{1}{2}} s^{-1}$
Thermal velocity	$v_{te} = \omega_{pe} \lambda_D$	$\left(\frac{k_{\rm B}T_{\rm e}}{m_{\rm e}}\right)^{\frac{1}{2}}{\rm ms}^{-1}$	$\left(\frac{k_B T_e}{m_e}\right)^{\frac{1}{2}} \text{cms}^{-1}$
Electron gyrofrequency	ω_c	$eB/m_e \mathrm{s}^{-1}$	$eB/m_e \mathrm{s}^{-1}$
Electron-ion collision frequency	$ u_{ei}$	$\frac{\pi^{\frac{3}{2}} n_e Z e^4 \ln \Lambda}{2^{\frac{1}{2}} (4\pi \varepsilon_0)^2 m_e^2 v_{le}^3} s^{-1}$	$\frac{4(2\pi)^{\frac{1}{2}} n_e Z e^4 \ln \Lambda}{3m_e^2 v_{te}^3} \text{ s}^{-1}$
Coulomb-logarithm	In Λ	In $\frac{9N_D}{Z}$	$\ln \frac{9N_D}{Z}$

Wave propagation in plasmas Formulary 55 | 57

Useful formulae

Plasmafrequency
$$\omega_{pe} = 5.64 \times 10^4 n_e^{\frac{1}{2}} \text{ s}^{-1}$$

Critical density
$$n_c = 10^{21} \lambda_{\rm L}^{-2} \ {\rm cm}^{-3}$$

Debye length
$$\lambda_D = 743 \; T_e^{\frac{1}{2}} \, n_e^{-\frac{1}{2}} \; \mathrm{cm}$$

Skin depth
$$\delta = c/\omega_{\it p} = 5.31 \times 10^5 n_{\it e}^{-\frac{1}{2}} \ {\rm cm}$$

Elektron-ion collision frequency
$$u_{ei} = 2.9 \times 10^{-6} n_e T_e^{-\frac{3}{2}} \ln \Lambda \text{ s}^{-1}$$

Ion-ion collision frequency
$$\nu_{ii} = 4.8 \times 10^{-8} Z^4 \left(\frac{m_p}{m_i}\right)^{\frac{1}{2}} n_i T_i^{-\frac{3}{2}} \ln \Lambda \text{ s}^{-1}$$

Quiver amplitude
$$a_0 \equiv \frac{p_{osc}}{m_e c} = \left(\frac{I \lambda_L^2}{1.37 \times 10^{18} \text{Wcm}^{-2} \mu \text{m}^2}\right)^{\frac{1}{2}}$$

Relativistic focussing threshold
$$P_c = 17 \left(\frac{n_c}{n_e} \right) \text{ GW}$$

$$T_e$$
 in eV; n_e, n_i in cm⁻³, wavelength λ_L in μ m

Maxwell's Equations

Name	(SI)	(cgs)
Gauss' law	$oldsymbol{ abla}.oldsymbol{arepsilon}= ho/arepsilon_0$	$oldsymbol{ abla}.oldsymbol{arepsilon}=4\pi ho$
Gauss' magnetism law	$oldsymbol{ abla}.oldsymbol{\mathcal{B}}=0$	$oldsymbol{ abla}.oldsymbol{\mathcal{B}}=0$
Ampère	$oldsymbol{ abla} imesoldsymbol{B}=\mu_0oldsymbol{J}+rac{1}{c^2}rac{\partialoldsymbol{E}}{\partial t}$	$oldsymbol{ abla} imesoldsymbol{B}=rac{4\pi}{c}oldsymbol{J}+rac{1}{c}rac{\partialoldsymbol{E}}{\partial t}$
Faraday	$oldsymbol{ abla} imesoldsymbol{arepsilon}=-rac{\partial oldsymbol{oldsymbol{B}}}{\partial t}$	$ abla imes m{E} = -rac{1}{c}rac{\partial m{B}}{\partial t}$
Lorentz force per unit charge	$ extbf{\emph{E}} + extbf{\emph{v}} imes extbf{\emph{B}}$	$E + \frac{1}{c}v \times B$

Wave propagation in plasmas Formulary 57 | 57