
1 Taylor map

Format name
name

Name of the Taylor map found in file “tmmap.dat”.
type

Type identifier is 29 for all Taylor maps.
Remarks
The file containing the Taylor map is a large file with every Taylor map required for the
lattice. It takes the following form with no line spacing between maps:

NAME

name
Number of coefficients per series
6 sections for the map to each of the 6 MADX coordinates with each section in the form
of a list of exponents (Exp.) (integer) and coefficients (double) in SI units (mi·radj):
Exp. x, Exp. px, Exp. y, Exp. py, Exp. z, Exp. δ, Coefficient
. . .× Number of coefficients per series

The author proposes two uses for the Taylor map element. One is for prototyping sym-
plectic thin elements by setting the conjugate position maps to being maps to themselves
effectively producing a momentum kick only. The six sections of the map must all be
the same length so the map must be padded with a series of zero lines. The second use is
as a thick element in the thin 6d tracking. For this to fully work in 6d thin tracking the
user is required to produce reverse drifts half the length of the element and sandwich the
element between these reverse drifts in the lattice. The maximum number of different
maps that can be loaded is limited by the parameter tmelem (200) with the total length
of all these combined limited by the parameter tmmxterm (106).
Method
Coordinate change

x 7→x6/1000

px 7→x′6 × (1 + δ)/1000

y 7→y6/1000

py 7→y′6 × (1 + δ)/1000

z 7→z6/β0/1000

δ 7→pσ6/β0

Taylor map iteration, for each variable X =
{x, px, y, py, z, δ} the map is iterated over
the list of exponents E and coefficient value
V .

x6 7→
∑
i

xEixp
Eipx
x yEiyp

Eipx
x zEizδEiδVi × 1000

x′6 7→
∑
i

xEixp
Eipx
x yEiyp

Eipx
x zEizδEiδVi ×

1000

1 + δ

y6 7→
∑
i

xEixp
Eipx
x yEiyp

Eipx
x zEizδEiδVi × 1000

y′6 7→
∑
i

xEixp
Eipx
x yEiyp

Eipx
x zEizδEiδVi ×

1000

1 + δ

z6 7→
∑
i

xEixp
Eipx
x yEiyp

Eipx
x zEizδEiδVi × 1000× β0

pσ6 7→
∑
i

xEixp
Eipx
x yEiyp

Eipx
x zEizδEiδVi × 1000× β0
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2 Numerical field integrator

Format name type
name

Name of the vector file “[name].6pot”.
type

Type identifier is 30 for all numerical integrations.
Remarks
Each potential has its own file containing the the potential expressed as an expansion of
x, y and z at different s values at regular binning seperation of the integration step size
such that the input file takes the form:

s0, Exp. x, Exp. y, Exp. z, Ax coefficient, Ay coefficient, Az coefficient
...
s0 + ∆s, Exp. x, Exp. y, Exp. z, Ax coefficient, Ay coefficient, Az coefficient
...
...
L, Exp. x, Exp. y, Exp. z, Ax coefficient, Ay coefficient, Az coefficient

where, s0 is the initial s position in the reference frame of the element, ∆s is the in-
tegration step length and L is the final position in the reference frame of the element.
The exponents of x, y and z are integer values and ~A coefficients are to double precision
and are of the non-normalised form of the vector potential in SI units (V· s· m−1). For
magnets the fields might be fitted to the form of a series by solving the Laplace equation
[1] and for RF elements the fields might be fitted by solving the Helmholtz equation
[2]. For each type of element a single pass map is outputted in the form of files named
“[name].1map”. The integrator used is a second order explicit integration of the acceler-
ator Hamiltonian in MADX coordinates [3]. Coordinates transformations are performed
in the element as are reverse drifts half the length of the element either side of the in-
tegration of the element in order to create a thin element to work in 6d thin tracking.
The size of the potential of one element is in theory limited to by the parameter fwterms
(100,000) and number of different element types to fwelem (200) which can be extended
if required by the user in the source code.
Method
Coordinate change

x 7→x6/1000

px 7→x′6 × (1 + δ6)/1000

y 7→y6/1000

py 7→y′6 × (1 + δ6)/1000

z 7→z6/β0/1000

δ 7→pσ6/β0
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Reverse drift over half the length

x 7→x− L px
2(1 + δ)

y 7→y − L py
2(1 + δ)

z 7→z + L

(
p2
x + p2

y

4(1 + δ)2
+

1

4γ2(1 + δ)2

)

Numerical integration with splitting:

e−∆s:H1+H2+H3+H4: = e−
∆s
2

:H1+H2+H3:e−∆s:H4:e−
∆s
2

:H1+H2+H3:

= e−
∆s
4

:H1+H2:e−
∆s
2

:H3:e−
∆s
4

:H1+H2:e−∆s:H4:e−
∆s
4

:H1+H2:e−
∆s
2

:H3:e−
∆s
4

:H1+H2:

= e−
∆s
8

:H1:e−
∆s
4

:H2:e−
∆s
8

:H1:e−
∆s
2

:H3:e−
∆s
8

:H1:e−
∆s
4

:H2:e−
∆s
8

:H1:

e−∆s:H4:e−
∆s
8

:H1:e−
∆s
4

:H2:e−
∆s
8

:H1:e−
∆s
2

:H3:e−
∆s
8

:H1:e−
∆s
4

:H2:e−
∆s
8

:H1:

With Lie transformations,

e−∆s:H1:



x
px
y
py
z
δ
s
ps


7→



x
px
y
py

z + ∆s

(
1
β0
− 1− 1

2β2
0γ

2
0

(
1
β0

+δ
)2

)
δ

s+ ∆s
ps


(1)

e−∆s:H4:



x
px
y
py
z
δ
s
ps


7→



x

px + ∆s∂as∂x
y

py + ∆s∂as∂y
z

δ + ∆s∂as∂z
s
ps


(2)

with the mixed terms H2 and H3 defined,

e:Ix:e−∆s:H̃2(px):e−:Ix = e∆s:H2: (3)
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where,

e:Ix:



x
px
y
py
z
δ
s
ps


7→



x
px − ax

y

py −
∫ x

0
∂
∂yax(x, y, z, s) dx

z

δ −
∫ x

0
∂
∂zax(x, y, z, s) dx

s
ps


(4)

e−∆s:H̃2:



x
px
y
py
z
δ
s
ps


7→



x+ ∆s px(
1
β0

+δ
)

px
y
py

z −∆s p2
x

2
(

1
β0

+δ
)2

δ
s
ps


(5)

Reverse drift over half the length

x 7→x− L px
2(1 + δ)

y 7→y − L py
2(1 + δ)

z 7→z + L

(
p2
x + p2

y

4(1 + δ)2
+

1

4γ2(1 + δ)2

)

Coordinate change

x6 7→x× 1000

x′6 7→
px

1 + δ
× 1000

y6 7→y × 1000

y′6 7→
py

1 + δ
× 1000

z6 7→z × 1000× β0

pσ6 7→δ × β0
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3 Normal quadrupole fringe field

Format name type α
name
type

Type identifier is 31 for all fringe fields.
α

Fringe field strength. Entrance face and exit face with strengths ±k0/6 [m2] respec-
tively.
Remarks
Implementation of the leading order fringe field component as described in the refer-
ence [4]. Describes only the lumped kick of the Bz component.
Method
Coordinate change

x 7→x6/1000

px 7→x′6 × (1 + δ)/1000

y 7→y6/1000

py 7→y′6 × (1 + δ)/1000

z 7→z6/β0/1000

δ 7→pσ6/β0

Rotate -45◦

x 7→x− y√
2

px 7→
px − py√

2

y 7→x+ y√
2

py 7→
px + py√

2

Leading order effect

x 7→x− α y3

1 + δ

py 7→py + 3α
pxy

2

1 + δ

z 7→z + α
pxy

3

(1 + δ)2

y 7→y − α x3

1 + δ

px 7→px + 3α
pyx

2

1 + δ

z 7→z + α
pyx

3

(1 + δ)2

Coordinate change

x6 7→x× 1000

x′6 7→
px

1 + δ
× 1000

y6 7→y × 1000

y′6 7→
py

1 + δ
× 1000

z6 7→z × 1000× β0

pσ6 7→δ × β0

Rotate 45◦

x 7→x+ y√
2

x′ 7→x′ + y′√
2

y 7→−x+ y√
2

y′ 7→−x
′ + y′√

2
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