1 Taylor map

Format name

name
Name of the Taylor map found in file "tmmap.dat".
type
Type identifier is 29 for all Taylor maps.

Remarks

The file containing the Taylor map is a large file with every Taylor map required for the lattice. It takes the following form with no line spacing between maps:

NAME

name
Number of coefficients per series
6 sections for the map to each of the 6 MADX coordinates with each section in the form of a list of exponents (Exp.) (integer) and coefficients (double) in SI units ($\mathrm{m}^{i} \cdot \mathrm{rad}^{j}$):
Exp. x, Exp. p_{x}, Exp. y, Exp. p_{y}, Exp. z, Exp. δ, Coefficient
$\ldots \times$ Number of coefficients per series
The author proposes two uses for the Taylor map element. One is for prototyping symplectic thin elements by setting the conjugate position maps to being maps to themselves effectively producing a momentum kick only. The six sections of the map must all be the same length so the map must be padded with a series of zero lines. The second use is as a thick element in the thin 6 d tracking. For this to fully work in 6 d thin tracking the user is required to produce reverse drifts half the length of the element and sandwich the element between these reverse drifts in the lattice. The maximum number of different maps that can be loaded is limited by the parameter tmelem (200) with the total length of all these combined limited by the parameter tmmxterm $\left(10^{6}\right)$.

Method

Coordinate change

$$
\begin{aligned}
x & \mapsto x_{6} / 1000 \\
p_{x} & \mapsto x^{\prime}{ }_{6} \times(1+\delta) / 1000 \\
y & \mapsto y_{6} / 1000 \\
p_{y} & \mapsto y^{\prime}{ }_{6} \times(1+\delta) / 1000 \\
z & \mapsto z_{6} / \beta_{0} / 1000 \\
\delta & \mapsto p_{\sigma 6} / \beta_{0}
\end{aligned}
$$

Taylor map iteration, for each variable $X=$ $\left\{x, p_{x}, y, p_{y}, z, \delta\right\}$ the map is iterated over the list of exponents E and coefficient value V.

$$
\begin{aligned}
x_{6} & \mapsto \sum_{i} x^{E_{i x}} p_{x}^{E_{i p_{x}}} y^{E_{i y}} p_{x}^{E_{i p_{x}}} z^{E_{i z}} \delta^{E_{i \delta}} V_{i} \times 1000 \\
x^{\prime}{ }_{6} & \mapsto \sum_{i} x^{E_{i x}} p_{x}^{E_{i p_{x}}} y^{E_{i y}} p_{x}^{E_{i p_{x}}} z^{E_{i z}} \delta^{E_{i \delta}} V_{i} \times \frac{1000}{1+\delta} \\
y_{6} & \mapsto \sum_{i} x^{E_{i x}} p_{x}^{E_{i p_{x}}} y^{E_{i y}} p_{x}^{E_{i p_{x}}} z^{E_{i z}} \delta^{E_{i \delta}} V_{i} \times 1000 \\
y_{6}^{\prime} & \mapsto \sum_{i} x^{E_{i x}} p_{x}^{E_{i p_{x}}} y^{E_{i y}} p_{x}^{E_{i p_{x}}} z^{E_{i z}} \delta^{E_{i \delta}} V_{i} \times \frac{1000}{1+\delta} \\
z_{6} & \mapsto \sum_{i} x^{E_{i x}} p_{x}^{E_{i p_{x}}} y^{E_{i y}} p_{x}^{E_{i p_{x}}} z^{E_{i z}} \delta^{E_{i \delta}} V_{i} \times 1000 \times \beta_{0} \\
p_{\sigma 6} & \mapsto \sum_{i} x^{E_{i x}} p_{x}^{E_{i p_{x}}} y^{E_{i y}} p_{x}^{E_{i p_{x}}} z^{E_{i z}} \delta^{E_{i \delta}} V_{i} \times 1000 \times \beta_{0}
\end{aligned}
$$

2 Numerical field integrator

Format name type
name
Name of the vector file "[name].6pot".
type
Type identifier is 30 for all numerical integrations.

Remarks

Each potential has its own file containing the the potential expressed as an expansion of x, y and z at different s values at regular binning seperation of the integration step size such that the input file takes the form:

```
\(s_{0}\), Exp. x, Exp. y, Exp. z, \(A_{x}\) coefficient, \(A_{y}\) coefficient, \(A_{z}\) coefficient
\(\vdots\)
\(s_{0}+\Delta s\), Exp. x, Exp. y, Exp. z, \(A_{x}\) coefficient, \(A_{y}\) coefficient, \(A_{z}\) coefficient
:
\(L, \operatorname{Exp} . x, \operatorname{Exp} . y, E x p . z, A_{x}\) coefficient, \(A_{y}\) coefficient, \(A_{z}\) coefficient
```

where, s_{0} is the initial s position in the reference frame of the element, Δs is the integration step length and L is the final position in the reference frame of the element. The exponents of x, y and z are integer values and \vec{A} coefficients are to double precision and are of the non-normalised form of the vector potential in SI units (V. $\mathrm{s} \cdot \mathrm{m}^{-1}$). For magnets the fields might be fitted to the form of a series by solving the Laplace equation [1] and for RF elements the fields might be fitted by solving the Helmholtz equation [2]. For each type of element a single pass map is outputted in the form of files named "[name].1map". The integrator used is a second order explicit integration of the accelerator Hamiltonian in MADX coordinates [3]. Coordinates transformations are performed in the element as are reverse drifts half the length of the element either side of the integration of the element in order to create a thin element to work in 6 d thin tracking. The size of the potential of one element is in theory limited to by the parameter fwterms $(100,000)$ and number of different element types to fwelem (200) which can be extended if required by the user in the source code.

Method

Coordinate change

$$
\begin{aligned}
x & \mapsto x_{6} / 1000 \\
p_{x} & \mapsto x^{\prime}{ }_{6} \times\left(1+\delta_{6}\right) / 1000 \\
y & \mapsto y_{6} / 1000 \\
p_{y} & \mapsto y^{\prime}{ }_{6} \times\left(1+\delta_{6}\right) / 1000 \\
z & \mapsto z_{6} / \beta_{0} / 1000 \\
\delta & \mapsto p_{\sigma 6} / \beta_{0}
\end{aligned}
$$

Reverse drift over half the length

$$
\begin{aligned}
& x \mapsto x-L \frac{p_{x}}{2(1+\delta)} \\
& y \mapsto y-L \frac{p_{y}}{2(1+\delta)} \\
& z \mapsto z+L\left(\frac{p_{x}^{2}+p_{y}^{2}}{4(1+\delta)^{2}}+\frac{1}{4 \gamma^{2}(1+\delta)^{2}}\right)
\end{aligned}
$$

Numerical integration with splitting:

$$
\begin{aligned}
& e^{-\Delta s: H_{1}+H_{2}+H_{3}+H_{4}:}=e^{-\frac{\Delta s}{2}: H_{1}+H_{2}+H_{3}}: e^{-\Delta s: H_{4}:} e^{-\frac{\Delta s}{2}: H_{1}+H_{2}+H_{3}:} \\
& =e^{-\frac{\Delta s}{4}: H_{1}+H_{2}:} e^{-\frac{\Delta s}{2}: H_{3}:} e^{-\frac{\Delta s}{4}: H_{1}+H_{2}}: e^{-\Delta s: H_{4}:} e^{-\frac{\Delta s}{4}: H_{1}+H_{2}:} e^{-\frac{\Delta s}{2}: H_{3}:} e^{-\frac{\Delta s}{4}: H_{1}+H_{2}:} \\
& =e^{-\frac{\Delta s}{8}: H_{1}:} e^{-\frac{\Delta s}{4}: H_{2}:} e^{-\frac{\Delta s}{8}: H_{1}:} e^{-\frac{\Delta s}{2}: H_{3}:} e^{-\frac{\Delta s}{8}: H_{1}:} e^{-\frac{\Delta s}{4}: H_{2}:} e^{-\frac{\Delta s}{8}: H_{1}:} \\
& e^{-\Delta s: H_{4}:} e^{-\frac{\Delta s}{8}: H_{1}:} e^{-\frac{\Delta s}{4}: H_{2}:} e^{-\frac{\Delta s}{8}: H_{1}:} e^{-\frac{\Delta s}{2}: H_{3}:} e^{-\frac{\Delta s}{8}: H_{1}:} e^{-\frac{\Delta s}{4}: H_{2}:} e^{-\frac{\Delta s}{8}: H_{1}:}
\end{aligned}
$$

With Lie transformations,

$$
\left.\begin{array}{rl}
e^{-\Delta s: H_{1}:}\left(\begin{array}{c}
x \\
p_{x} \\
y \\
p_{y} \\
z \\
\delta \\
s \\
p_{s}
\end{array}\right) & \mapsto\left(\begin{array}{c}
p_{x} \\
y \\
p_{y} \\
z+\Delta s\left(\frac{1}{\beta_{0}}-1-\frac{1}{2 \beta_{0}^{2} \gamma_{0}^{2}\left(\frac{1}{\beta_{0}}+\delta\right)^{2}}\right) \\
\delta \\
s+\Delta s \\
p_{s} \\
e^{-\Delta s: H_{4}:} \\
p_{y} \\
z \\
\delta \\
p_{y} \\
p_{x} \\
x \\
y \\
z \\
p_{y}+\Delta s \frac{\partial a_{s}}{\partial y} \\
\delta+\Delta s \frac{\partial a_{s}}{\partial z} \\
p_{s}
\end{array}\right)
\end{array}\right)
$$

with the mixed terms H_{2} and H_{3} defined,

$$
\begin{equation*}
e^{: I_{x}:} e^{-\Delta s: \tilde{H}_{2}\left(p_{x}\right):} e^{-: I_{x}}=e^{\Delta s: H_{2}:} \tag{3}
\end{equation*}
$$

where,

$$
\left.\begin{array}{rl}
e^{: I_{x}:}\left(\begin{array}{c}
x \\
p_{x} \\
y \\
p_{y} \\
z \\
\delta \\
s \\
p_{s}
\end{array}\right) & \mapsto\left(\begin{array}{c}
x \\
p_{x}-a_{x} \\
y \\
p_{y}-\int_{0}^{x} \frac{\partial}{\partial y} a_{x}(x, y, z, s) d x \\
z \\
\delta-\int_{0}^{x} \frac{\partial}{\partial z} a_{x}(x, y, z, s) d x \\
s \\
p_{s} \\
e^{-\Delta s: \tilde{H}_{2}:} \\
p_{y} \\
z \\
\delta \\
p_{y}
\end{array}\right)
\end{array}\right)
$$

Reverse drift over half the length

$$
\begin{aligned}
& x \mapsto x-L \frac{p_{x}}{2(1+\delta)} \\
& y \mapsto y-L \frac{p_{y}}{2(1+\delta)} \\
& z \mapsto z+L\left(\frac{p_{x}^{2}+p_{y}^{2}}{4(1+\delta)^{2}}+\frac{1}{4 \gamma^{2}(1+\delta)^{2}}\right)
\end{aligned}
$$

Coordinate change

$$
\begin{aligned}
x_{6} & \mapsto x \times 1000 \\
x_{6}^{\prime} & \mapsto \frac{p_{x}}{1+\delta} \times 1000 \\
y_{6} & \mapsto y \times 1000 \\
y_{6}^{\prime} & \mapsto \frac{p_{y}}{1+\delta} \times 1000 \\
z_{6} & \mapsto z \times 1000 \times \beta_{0} \\
p_{\sigma 6} & \mapsto \delta \times \beta_{0}
\end{aligned}
$$

3 Normal quadrupole fringe field

Format name type α
name
type
Type identifier is 31 for all fringe fields.
α
Fringe field strength. Entrance face and exit face with strengths $\pm k_{0} / 6\left[\mathrm{~m}^{2}\right]$ respectively.

Remarks

Implementation of the leading order fringe field component as described in the reference [4]. Describes only the lumped kick of the B_{z} component.

Method

Coordinate change

$$
\begin{aligned}
x & \mapsto x_{6} / 1000 \\
p_{x} & \mapsto x^{\prime}{ }_{6} \times(1+\delta) / 1000 \\
y & \mapsto y_{6} / 1000 \\
p_{y} & \mapsto y^{\prime}{ }_{6} \times(1+\delta) / 1000 \\
z & \mapsto z_{6} / \beta_{0} / 1000 \\
\delta & \mapsto p_{\sigma 6} / \beta_{0}
\end{aligned}
$$

Rotate -45°

$$
\begin{aligned}
x & \mapsto \frac{x-y}{\sqrt{2}} \\
p_{x} & \mapsto \frac{p_{x}-p_{y}}{\sqrt{2}} \\
y & \mapsto \frac{x+y}{\sqrt{2}} \\
p_{y} & \mapsto \frac{p_{x}+p_{y}}{\sqrt{2}}
\end{aligned}
$$

$$
\begin{aligned}
y \mapsto y-\alpha \frac{x^{3}}{1+\delta} \\
p_{x} \mapsto p_{x}+3 \alpha \frac{p_{y} x^{2}}{1+\delta} \\
z \mapsto z+\alpha \frac{p_{y} x^{3}}{(1+\delta)^{2}}
\end{aligned}
$$

Coordinate change

$$
\begin{aligned}
x_{6} & \mapsto x \times 1000 \\
x_{6}^{\prime} & \mapsto \frac{p_{x}}{1+\delta} \times 1000 \\
y_{6} & \mapsto y \times 1000 \\
y_{6}^{\prime} & \mapsto \frac{p_{y}}{1+\delta} \times 1000 \\
z_{6} & \mapsto z \times 1000 \times \beta_{0} \\
p_{\sigma 6} & \mapsto \delta \times \beta_{0}
\end{aligned}
$$

Rotate 45°

$$
\begin{aligned}
& x \mapsto x-\alpha \frac{y^{3}}{1+\delta} \\
& p_{y} \mapsto p_{y}+3 \alpha \frac{p_{x} y^{2}}{1+\delta} \\
& z \mapsto z+\alpha \frac{p_{x} y^{3}}{(1+\delta)^{2}}
\end{aligned}
$$

$$
\begin{aligned}
x & \mapsto \frac{x+y}{\sqrt{2}} \\
x^{\prime} & \mapsto \frac{x^{\prime}+y^{\prime}}{\sqrt{2}} \\
y & \mapsto \frac{-x+y}{\sqrt{2}} \\
y^{\prime} & \mapsto \frac{-x^{\prime}+y^{\prime}}{\sqrt{2}}
\end{aligned}
$$

References

[1] C Mitchell. Accurate transfer maps for realistic beam-line elements: Straight elements Phys. Rev. ST Accel. Beams, 13(6), 2010.
[2] D Abell. Numerical computation of high-order transfer maps for rf cavities. Phys. Rev. ST Accel. Beams, 9(5), 2006.
[3] Y Wu, E Forest, and D Robin. Explicit symplectic integrator for s-dependent static magnetic field. Phys. Rev. E, 68(4), 2003.
[4] E Forest, J Milutinović. Leading order hard edge fringe fields effects exact in $(1+\delta)$ and consistent with Maxwell's equations for rectilinear magnets Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 269(3), 1988.

