Proposal of crab cavities and fringe fields models in HL-LHC optics

R. De Maria

Optics Version

- SLHCV3.1b: tracking studies well advanced.
- HL-LHCV1.0:
 - No linear optics changes.
 - Tracking tools in preparations for field quality studies.
- HL-LHCV??:
 - Next version with many layout and linear optics changes.

Strategy for crab cavities [any optics]

1. Temporarely:

- In madx optics files use rfmultipole(dipole) instead of tkicker
 - 1. Supported in Twiss (voltage matching) and Track (short term simulations)
 - 2. Dynamic effects in track managed by the update options (no need of the special options in the crab cavity element)
 - 3. Update Madx conversion to Sixtrack to use existing elements (to be reviewed anyway since it is not consistent at the moment).
- 2. Sixtrack: no change

2. In the long-run:

- 1. Sixtrack
 - 1. Implement generic rf-multipole (with different phase conventions to match sixtrack defaults)
 - 2. Extend time dependent effect module (already in preparation for other studies).
- 2. Update madx conversion to Sixtrack to use new rf-multipole implementation.

Alternative: if step 2.1 is quick enough one can go directly to last step.

Strategy for fringe fields [existing optics]

Since no linear optics changes are foreseen, only non linear fringe field effect could be included.

- 1. In lattice files:
 - 1. add marker (or new mad element) for end of fringe field kick location (useful in thin lattices);
 - 2. in SixTrack:
 - 1. add hard edge fringe field kick (in preparation by Dave)
 - 2. use tune matching in SixTrack to absorb the small feed-down effects (done properly with ATS optics using different powering, therefore element name, of the weak arc quadrupoles).
- 2. Rely on manual editing to test new tracking maps in SixTrack.

Strategy for fringe fields [new optics versions]

Since optics needs to be re-matched anyway, linear fringe field can be directly included in the model:

1. In lattice files:

- 1. Split all triplet quadrupoles in 2n+1 thick slices: n slices for 2 fringe regions and one for body (adapting scripts from UK colleagues).
- 2. Link fringe slices strengths to the nominal field such that: k_i : = $k w_i$; $l = \sum_i w_i l_i$
- 3. Make thin optics with 1 slice for fringe region and 16 slices (teapot) for body.
- 4. Assuming non-harmonic linear component is negligible.

In SixTrack:

- 1. implement a model that can neglect the linear part.
- 2. rely on SixTrack tune matching to absorb only small working point changes.

Fringe Field Effects

Fringe field effects in quadrupoles may be categorized

s-dependent pure quadrupole^[1]:

$$\delta H = -\frac{1}{2}K'x^2yp_x - \frac{1}{48}K''(x^4 + 6x^2y^2 - y^4)$$

Hard edge model takes into account k' effects and commutator between K' and K'' effects, but not directly K'' effects.

- Imperfection from coil end geometry:
 - harmonic part (e.g. included in the measured harmonic over the whole length);
 - non-harmonic part.

[1] The vector potential in accelerator magnets, Gardner, 1991