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Abstract

In the late seventies, the large order behaviour of perturbation theory was

determined, following Lipatov, by path or field integral methods (instanton

calculus). It became rapidly clear that the issue was not are perturbative

series divergent?, they generally are, but are they Borel summable? In this

case one can hope to recover the true functions from the expansion.

We found that the simplest examples of non-Borel summable series was

provided by quantum mechanics in the case of potentials with degenerate

minima. The question then was what kind of additional information is

needed to specify the exact functions?

In this talk, conjectures about the exact semi-classical expansion of low-

lying energy levels for a few analytic potentials, like the quartic double-well

or the periodic cosine potentials, with degenerate minima are reviewed.

They take the form of generalized Bohr–Sommerfeld quantization formulae

whose origin has been later clarified using the theory of resurgent functions.



These formulae involve an infinite number of perturbative series, but

which can be generated by a few spectral functions. In the simplest cases

only two functions appear and, recently, it has been pointed out that the

two are simply related.

The conjectures were initially suggested by semi-classical evaluations of

the partition function based on the path integral formalism.

The infinite number of saddle points, i.e., multi-instantons, generated

by the steepest descent method yields contributions that can be summed

exactly at leading order. The same strategy could still be useful in problems

where our present understanding is more limited.

Finally, these properties have a direct interpretation within the framework

of the complex WKB expansion of the solutions of the Schrödinger equation.
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Introduction

Remark. The results we describe here, mainly apply to polynomial po-

tentials and, on a case by case study, to some other analytic potentials like

periodic potentials of cosine potential type.

Perturbative expansions are obtained by first approximating the poten-

tial by a harmonic potential near its minimum. This leads to (in general

divergent) expansions in powers of ~ for energy eigenvalues of order ~.

For potentials with degenerate minima, expansions in powers of ~ are

shown to be non-Borel summable. Moreover, additional contributions of

order exp(−const. /~), generated by quantum tunnelling, have to be added

to the perturbative expansion. Therefore, the determination of eigenvalues

starting from their expansion for ~ small becomes a non-trivial problem.

In this situation, our conjectures give a systematic procedure to calculate

energy eigenvalues, for ~ finite, from expansions that are shown to contain

powers of ~, ln ~ and exp(−const. /~).



Moreover, generalized Bohr–Sommerfeld formulae allow to infer the in-

finite number of series that appear in such formal expansions from a few

WKB expansions.

This relation with the WKB expansion is not completely trivial. Indeed,

the perturbative expansion corresponds from the viewpoint of the WKB

approximation to a situation with confluent singularities and thus, for ex-

ample, the usual WKB expressions for barrier penetration are not uniform

when the energy goes to zero.

Finally, the origin of these conjectures have found a natural explanation in

the framework of Ecalle’s theory of resurgent functions, as has been shown

by Pham’s collaborators.



Generalized Bohr–Sommerfeld quantization formulae

We first explain the conjecture in the case of the so-called quartic double-

well potential. The symbol g plays the role of ~ and energy eigenvalues are

measured in units of ~, a normalization adapted to perturbative expansions.

The quartic double-well potential

The Hamiltonian corresponding to the double-well potential can be written

as

H = −g
2

(

d

dq

)2

+
1

g
V (q), V (q) =

1

2
q2(1− q)2.

The potential is symmetric in q ↔ (1 − q) and thus the Hamiltonian com-

mutes with the corresponding reflection operator,

Pψ(q) = ψ(1− q) ⇒ [H,P ] = 0 .

The potential has two symmetric degenerate minima.



Eigenfunctions and eigenvalues

The eigenfunctions of H satisfy

Hψǫ,N (q) = Eǫ,N (g)ψǫ,N (q), Pψǫ,N (q) = ǫψǫ,N (q),

where ǫ = ±1 and Eǫ,N (g) = N + 1/2 +O(g).

We have conjectured (Zinn-Justin 1983) that the eigenvalues Eǫ,N (g) have

an exact semi-classical expansion of the form

Eǫ,N (g) =

∞
∑

0

E
(0)
N,lg

l

+

∞
∑

n=1

(

2

g

)Nn (

−ǫe
−1/6g

√
πg

)n n−1
∑

k=0

(

ln(−2/g)
)k

∞
∑

l=0

eN,nklg
l.

The series
∑

eN,nklg
l in powers of g are not Borel summable for g > 0 and

have to be summed for g negative first, where ln(−g) is also real. One then

proceeds by analytic continuation to g > 0 consistently for the series and

ln(−g).



In the analytic continuation, the Borel sums become complex with imagi-

nary parts exponentially smaller by about a factor e−1/3g than the real parts.

These imaginary contributions are cancelled by the perturbative imaginary

parts coming from the function ln(−2/g).

We have also conjectured that all the series are generated by an expansion

for g small of a spectral equation or generalized Bohr–Sommerfeld quantiza-

tion formula, which in the case of the double-well potential reads (ǫ = ±1)

1

Γ( 12 −B)
+

ǫi√
2π

(

−2

g

)B(E,g)

e−A(E,g)/2 = 0

with
B(E, g) = −B(−E,−g) = E +

∑

k=1g
kbk+1(E),

A(E, g) = −A(−E,−g) = 1

3g
+
∑

k=1g
kak+1(E).



The coefficients bk(E), ak(E) are odd or even polynomials in E of degree

k. The three first orders, for example, are

B(E, g) = E + g
(

3E2 + 1
4

)

+ g2
(

35E3 + 25
4 E
)

+O
(

g3
)

,

A(E, g) = 1
3g

−1 + g
(

17E2 + 19
12

)

+ g2
(

227E3 + 187
4 E

)

+O
(

g3
)

.

The function B(E, g) can be inferred from the complex WKB perturbative

expansion. The function A(E, g) has initially been determined at this order

by a combination of analytic and numerical calculations.

However, recently, it has been proved (Dunne and Unsal) for the dou-

ble well and cosine potentials, using differential equation techniques, the

intriguing relation
∂E

∂B
= −6Bg − 3g2

∂A

∂g
,

which reduces the determination of both functions to the determination of

the perturbative spectral function B(E, g).



The n-instanton contributions at leading order

Replacing the functions A and B by their leading terms, one obtains

e−1/6g

√
2π

(

−2

g

)E

= − ǫi

Γ( 12 − E)
⇔ cosπE

π
= ǫi

e−1/6g

√
2π

(

−2

g

)E
1

Γ( 12 + E)
.

Expanding then the equation in powers of e−1/6g, one obtains terms that,

from the point of view of the path integral representation, correspond to

the successive multi-instanton contributions at leading order.

For example, the term proportional to e−1/6g, which can be identified

with the one-instanton contribution at leading order, is

E
(1)
N (g) = − ǫ

N !

(

2

g

)N+1/2 e−1/6g

√
2π

(

1 +O(g)
)

.

The next term, (the two-instanton contribution), is (ψ = (ln Γ)′)

E
(2)
N (g) =

1

(N !)2

(

2

g

)2N+1 e−1/3g

2π
[ln(−2/g)− ψ(N + 1) +O (g ln g)] .



More generally, the nth power, which can be identified with the n-instanton

contribution at leading order, has the form

E
(n)
N (g)

= (−1)n
(

2

g

)n(N+1/2)(e−1/6g

√
2π

)n
[

P (N)
n

(

ln(−2/g)
)

+O
(

g (ln g)
n−1
)]

,

in which PN
n (σ) is a polynomial of degree (n− 1). For example, for N = 0

one finds (γ is Euler’s constant)

P
(0)
1 (σ) = 1 , P

(0)
2 (σ) = σ + γ , P

(0)
3 (σ) =

3

2
(σ + γ)2 +

π2

12
.

.



An application: Large order behaviour of perturbation series

After an analytic continuation from g negative to g positive, the Borel sums

become complex with an imaginary part exponentially smaller by about a

factor e−1/3g than the real part.

Consistently, the function ln(−2/g) also becomes complex with an imag-

inary part ±iπ. Since the sum of all contributions is real, imaginary parts

must cancel.

For example, the non-perturbative imaginary part of the Borel sum of

the perturbation series cancels the perturbative imaginary part of the two-

instanton contribution. For the ground state,

ImE(0)(g) ∼
g→0

1

πg
e−1/3g Im

[

P
(0)
2

(

ln(−2/g)
)

]

= −1

g
e−1/3g .



The coefficients of the perturbative expansion

E(0)(g) =
∑

k

E
(0)
k gk

of the ground state energy, are related to the imaginary part by a Cauchy

integral (k > 1):

E
(0)
k =

1

π

∫ ∞

0

Im
[

E(0)(g)
] dg

gk+1
.

For k → ∞, the integral is dominated by small g values. Thus,

E
(0)
k ∼

k→∞
− 1

π

∫ ∞

0

e−1/3g

gk+2
dg = − 1

π
3k+1k! .



Similarly, since ImE(1)(g) and ImE(3)(g) cancel at leading order,

ImE(1)(g) ∼ 3π

(

e−1/6g

√
πg

)3

[ln(2/g) + γ +O(g ln(g))] .

The coefficients of the expansion

E(1)(g) = − 1√
πg

e−1/6g

(

1 +
∞
∑

E
(1)
k gk

)

are given by the dispersion integral

E
(1)
k = − 1

π

∫ ∞

0

{

Im
[

E(1)(g)
]√

πg e1/6g
} dg

gk+1
.

Combining both equations, one finds

E
(1)
k ∼ − 3

π

∫ ∞

0

(

ln
2

g
+ γ

)

e−1/3g dg

gk+2
∼ −3k+2

π
k! (ln 6k + γ) .

Both results have been confirmed numerically by calculating many terms of

the corresponding series.
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Fig. 1 Comparison of numerical evaluation of ∆(g) with the asymptotic expan-

sion for g small.

The real part of the two-instanton contribution

Another test has been provided by the evaluation of the ratio dominated

for g ≪ 1 by the two-instanton contribution, (see Jentschura’s talk)

∆(g) = 4

{

1
2 (E0,+ + E0,−)− Re

[

Borel sum E(0)(g)
]}

(E0,+ − E0,−)
2 (ln 2g−1 + γ)

= 1 + 3g + · · · .



Asymmetric wells

For a potential with two asymmetric wells,

V (q) = 1
2ω

2
1q

2 +O(q3), V (q) = 1
2ω

2
2(q − q0)

2 +O
(

(q − q0)
3
)

,

the spectral equation takes the form

1

Γ( 12 −B1)Γ(
1
2 −B2)

+
1

2π

(

−2C1

g

)B1(E,g) (

−2C2

g

)B2(E,g)

e−A(g,E) = 0 ,

where B1(E, g) and B2(E, g) are determined by the perturbative expansions

around the two minima of the potential

B1(E, g) = E/ω1 +O(g), B1(E, g) = E/ω2 +O(g),

and the constants C1 and C2 are adjusted in such a way that

A(E, g)− a/g = O(g), a = 2

∫ q0

0

dq
√

2V (q) .



From the poles of Γ-functions for g → 0, one sees that the spectral equa-

tion yields two sets of energy eigenvalues,

EN =
(

N + 1
2

)

ω1 +O(g) , EN =
(

N + 1
2

)

ω2 +O(g).

The same expression contains the instanton contributions to the two differ-

ent sets of eigenvalues.

One verifies that multi-instanton contributions are singular for ω = 1 but

the spectral equation is regular in the symmetric limit.

One-instanton contribution and large order behaviour. The spectral equa-

tion can again be used to infer the large order behaviour of perturbation

theory from the imaginary part of the leading instanton contribution by

writing a dispersion integral. Setting ω1 = 1, ω2 = ω, for the energy

EN (g) = N + 1
2 + O(g) one infers that the coefficients ENk of the pertur-

bative expansion of EN (g) behave, for order k → ∞, like

ENk =
k→∞

KN
Γ(k + (N + 1/2)(1 + 1/ω))

ak+(N+1/2)(1+1/ω)

(

1 +O
(

k−1
))

.



Other investigated potentials: the example of the periodic cosine potential

The cosine potential is still an entire function but no longer a polynomial.

On the other hand the periodicity of the potential simplifies the analysis,

because eigenfunctions can be classified according to their behaviour under

a translation of one period T ,

ψϕ(q + T ) = eiϕ ψϕ(q).

For the potential 1
16 (1 − cos 4q) (and thus T = π/2), the conjecture then

takes the form

(

2

g

)−B eA(E,g)/2

Γ( 12 −B)
+

(−2

g

)B e−A(g,E)/2

Γ( 12 +B)
=

2 cosϕ√
2π

.



Instantons

The conjectures were initially motivated by a summation of leading order

multi-instanton contributions. The method may be worth recalling since it

could still be useful for other, less understood, problems.

Partition function and resolvent

The path integral formalism allows calculating directly the quantum parti-

tion function, which for a Hamiltonian H with discrete spectrum has the

expansion

Z(β) ≡ tr e−βH =
∑

N≥0

e−βEN .

From the partition function, on infers the trace G(E) of the resolvent of H

(after analytic continuation and possible subtraction),

G(E) = tr
1

H − E
=

∫ ∞

0

dβ eβE Z(β) .



The poles of G(E) yield the spectrum of the Hamiltonian H. The Fredholm

determinant D(E) = det(H − E), which vanishes on the spectrum, is then

given by
∂

∂E
lnD(E) = −G(E).

For a symmetric double-well potential, one can separate eigenvalues accord-

ing to the parity of eigenfunctions by considering the two partition functions

Z±(β) = tr
[

1
2 (1± P ) e−βH

]

=
∑

N=0

e−βE±,N ,

where P is the reflection operator. The eigenvalues are then poles of (ǫ =

±1)

Gǫ(E) =

∫ ∞

0

dβ eβE Zǫ(β) .

For the periodic cosine potential, one uses a generalized partition function

with twisted boundary conditions depending on a rotation angle.



Path integrals and spectra of Hamiltonians

In the path integral formulation of quantum mechanics, the partition func-

tion is given by a summation over closed paths,

Z(β) ∝
∫

q(−β/2)=q(β/2)

[dq(t)] exp

[

−1

g

∫ β/2

−β/2

[

1
2 q̇

2(t) + V
(

q(t)
)]

dt

]

,

In the case of a symmetric potential with two degenerate minima, it is

convenient to also consider (P is the reflection operator)

Za(β) ≡ tr
(

P e−βH
)

,

which is obtained by a path integral with the boundary conditions q(−β/2) =
P (q(β/2)).

Then, eigenvalues corresponding to symmetric and antisymmetric eigen-

functions can be inferred from the combinations

Z±(β) = tr
[

1
2 (1± P ) e−βH

]

= 1
2

(

Z(β)±Za(β)
)

.



Perturbative expansion

For g → 0, the path integral can be evaluated by the steepest descent

method. Saddle points are solutions qc(t) to the Euclidean equations of

motion. When the potential has a unique minimum, for example, located at

q = 0, the leading saddle point is qc(t) ≡ 0. A systematic expansion around

the saddle point then yields the perturbative expansion of the eigenvalues

of the Hamiltonian.

In the case of potentials with degenerate minima, one must sum over

several saddle points: to each saddle point corresponds an eigenvalue and

thus several eigenvalues are degenerate at leading order. For the symmetric

double-well potential, all eigenvalues are twice degenerate to all orders in

perturbation theory:

E±,N (g) = E
(0)
N (g) ≡

∞
∑

n=0

E
(0)
N,ng

n.



Instantons

Eigenvalues can be extracted from the large β expansion. For β → ∞,

leading contributions to the path integral come from finite action solutions

of the Euclidean equations of motion. In the case of the path integral

representation of Za(β), constant solutions do not satisfy the boundary

conditions. Finite action solutions (instantons) necessarily correspond to

paths that connect the two minima of the potential (see Fig. 2).

In the example of the quartic double-well potential, such solutions are

qc(t) =
(

1 + e±(t−t0)
)−1

⇒ S(qc) = 1/6 .

Since the two solutions depend on an integration constant t0 (the instanton

position), one finds two one-parameter families of degenerated saddle points.

The corresponding contribution to the path integral is proportional, at

leading order for g → 0 and for β → ∞, to e−1/(6g) and thus is non-

perturbative.



1

–10 –5 5 10

q(t)

t0 t

Fig. 2 The instanton configuration.

The complete calculation involves integrating exactly over the time t0 (the

collective coordinate), which for β finite varies in [0, β], and over the remain-

ing fluctuations in the Gaussian approximation. The two lowest eigenvalues

are given by (ǫ = ±1)

Eǫ,0(g) = lim
β→∞

− 1

β
lnZǫ(β) =

g→0,β→∞
E

(0)
0 (g)− ǫE

(1)
0 (g),

E
(1)
0 (g) =

1√
πg

e−1/6g
(

1 +O(g)
)

.



Multi-instantons

For β finite, one finds subleading saddle points, which correspond to oscil-

lations in the well of the potential −V (q). For β → ∞, the action of the

solutions with n oscillations goes to n× 1/6.

However, the Gaussian integral at the saddle point diverges for β →
∞. Indeed, the classical solutions decompose into a succession of largely

separated instantons and fluctuations that change the distances between

instantons induce only infinitesimal variations of the action.

Therefore, one has to sum over all configurations of largely separated in-

stantons, connected in a smooth way, which become solutions of the equa-

tion of motion only asymptotically, for infinite separation. They depend on

n collective coordinates, the distance between instantons. The action then

has a dependence on the collective coordinates, called instanton interaction.



1

–10 –5 5 10 15

q(t)

t0 t0 + θ t

Fig. 3 A two-instanton configuration.

Example: the two-instanton configurations

In the infinite β limit, the one-instanton configuration can be written as

q±(t) = f
(

∓(t− t0)
)

, f(t) ≡ 1/
(

1 + et
)

= 1− f(−t),

where the constant t0 characterizes the instanton position.



One verifies that a configuration qc(t) that is the sum of instantons sepa-

rated by a distance θ, up to an additive constant adjusted in such a way as

to satisfy the boundary conditions (Fig. 3),

qc(t) = f(t− θ/2) + f(−t− θ/2)− 1 = f(t− θ/2)− f(t+ θ/2),

has the required properties: it is differentiable and for θ large, but fixed, it

minimizes the variation of the action. The corresponding action is

S(qc) = 1
3 − 2 e−θ +O

(

e−2θ
)

.

We show later that contributions to the classical action of order e−2θ give

only a correction of order g.

For β large, but finite, symmetry between θ and (β − θ) implies

S(qc) = 1
3 − 2 e−θ −2 e−(β−θ)+ negligible contributions.



The n-instanton action

For a succession of n instantons (more precisely, alternatively instantons

and anti-instantons) separated by times θi with

∑n
i=1θi = β ,

the classical action Sc(θi) is then

Sc(θi) =
n

6
− 2

n
∑

i=1

e−θi +O
(

e−(θi+θj)
)

.

At leading order, for θi ≫ 1, it is the sum of nearest-neighbour interactions.

For n even, the n-instanton configurations contribute to tr e−βH , while for

n odd they contribute to tr
(

P e−βH
)

(P is the reflection operator).



The n-instanton contribution

The evaluation, at leading order, of the contribution to the path integral

of the neighbourhood of the n-instanton configuration is simple but slightly

technical. One finds that the n-instanton contribution to the combination

Zǫ(β) =
1
2 tr

[

(1 + ǫP ) e−βH
]

,

(ǫ = ±1), can be written as

Z(n)
ǫ (β) = e−β/2 β

n

(

ǫ
e−1/6g

√
πg

)n ∫

θi≥0
∑

θi=β

∏

i

dθi exp

(

2

g

n
∑

i=1

e−θi

)

.

Neglecting the instanton interaction and summing over n one recovers the

one-instanton approximation to the energy eigenvalues.



Beyond the one-instanton approximation: a problem. If one examines

the classical action for multi-instantons, one discovers that the interaction

between instantons is attractive. Therefore, for g small, the dominant con-

tributions to the integral come from configurations in which the instantons

are close. For such configurations, the concept of instanton is no longer

meaningful, since the configurations cannot be distinguished from fluctua-

tions around the constant or the one-instanton solution.

Such a difficulty could have been expected. In the case of potentials with

degenerate minima the perturbative expansion is not Borel summable and

the series determines eigenvalues only up to exponentially decreasing terms

that are of the order of two-instanton contributions. But if the perturbative

expansion is ambiguous at the two-instanton order, n-instanton contribu-

tions with n ≥ 2 are not defined. To proceed any further, it is necessary to

first give a meaning to the sum of the perturbative expansion.



In the example of the quartic double-well potential, one can show that

the perturbation series is Borel summable for g negative. Therefore, we

define the sum of the perturbation series as the analytic continuation of this

Borel sum from g negative to g = |g| ± i0. This corresponds in the Borel

transformation to eventually integrate above or below the real positive axis.

Simultaneously, for g negative, the interaction between instantons becomes

repulsive and the multi-instanton contributions become meaningful.

Therefore, we first calculate, for g small and negative, both the sum

of the perturbation series and the multi-instanton instanton contributions,

and then perform an analytic continuation to g positive of all quantities

consistently.



The sum of leading order instanton contributions

We assume that initially g is negative and calculate the sum of leading

n-instanton contributions to the trace of the resolvents,

Gǫ(E) =
∑

n=1

∫ ∞

0

dβ eβE Z(n)
ǫ (β),

where

Z(n)
ǫ (β) ∼ β

n
e−β/2

(

ǫ√
2π

)n

e−n/6g

∫

θi≥0
∑

θi=β

n
∏

i=1

dθi exp

[

2

g

n
∑

i=1

e−θi

]

.

The integration over β is immediate, the integrals over the θi then factorize.

Evaluating the unique integral for g → 0−, summing over n and adding the

resolvent of the harmonic oscillator, one finds for the resolvent Gǫ(E) a

result consistent with the conjectures:

Gǫ(E) = − ∂

∂E
lnDǫ(E) ⇒ Dǫ(E) =

1

Γ( 12 − E)
+ ǫi

(

−2

g

)E e−1/6g

√
2π

.



Perturbative and WKB expansions from Schrödinger equations

These conjectures, motivated by semi-classical evaluation of path integrals

(instanton calculus), have been confirmed by considerations based on the

Schrödinger equation,

[Hψ](q) ≡ −g
2
ψ′′(q) +

1

g
V (q)ψ(q) = Eψ(q),

where the potential V is an entire function. This allows extending the

Schrödinger equation and its solutions to the q-complex plane.

A Riccati equation is obtained by setting

S(q) = −gψ′(q)/ψ(q).

One obtains

gS′(q)− S2(q) + 2V (q)− 2gE = 0 .



One decomposes

S(q) = S+(q) + S−(q) where, formally, S±(q; g, E) = ±S±(q;−g,−E) .

Then,

gS′
− − S2

+ − S2
− + 2V (q)− 2gE = 0 , gS′

+ − 2S+S− = 0 .

The quantization condition (or spectral equation) can then be written as

− 1

2iπg

∮

C

dz S+(z, E) = N + 1
2 ,

where N is also the number of real zeros of the eigenfunction, and C is a

contour that encloses them. This elegant formulation, restricted, however,

to one dimension and analytic potentials, bypasses the difficulties generally

associated with turning points.

It allows a smooth transition between WKB expansion (g → 0, gE fixed),

in our normalization, and perturbative expansion (g → 0, E fixed), which

can be derived by expanding the WKB expansion at E fixed.



V (q)

q1 q2 q3 q4

q
q0

Fig. 4 Degenerate minima: The four turning points.



WKB expansion

At leading order in the WKB limit, the function S+ reduces to

S+(q) = S(q) = S0(q), S0(q) =
√

2V (q)− 2gE

and the quantization condition becomes

N + 1
2 = B(E, g) = − 1

2iπg

∮

C

dz S0(z, E),

where the contour C encloses the cut of S0(q) which joins the turning points.

If the potential has two degenerate, non necessarily symmetric, minima,

for E small enough, the function S0(q) has four branch points q1 < q2 <

q3 < q4 on the real axis (Fig. 4).

One can define two functions B1(E, g) and B2(E, g) which, at leading

order, correspond to contours enclosing the cuts [q1, q2] and [q3, q4].



Moreover, comparing with the conjecture, one infers the decomposition

1

g

∮

C[q2,q3]

dz S+(z) = A(E, g) + ln(2π)−
2
∑

i=1

ln Γ
(

1
2 −Bi(E, g)

)

+Bi(E, g) ln(−g/2Ci),

where, at leading order in the WKB expansion, the contour now encloses a

cut [q2, q3] and the constants Ci are chosen such that A(E, g) has no term

of order g0.

For details see Jentschura’s talk.


