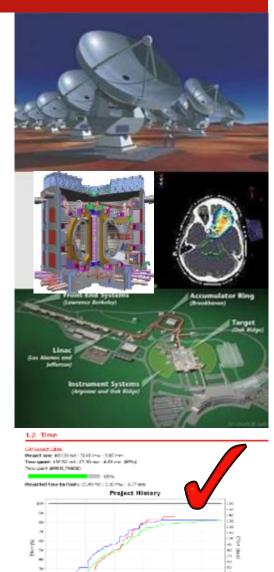


Slovene based computer science and engineering at the heart of mankind's most sophisticated machines




#### March 2013: ALMA Telescope Operational

August 2013: ESO NTT image of Newborn Star (Herbig-Haro object HH 46/47)

## The Company Cosylab

- Worldwide leader for control system integration of nuclear accelerators and large physics facilities, chosen by the majority of projects
  - We offer services and develop products where expert knowledge is required
  - We know how to use and develop state-of-the-art electronics and software
  - We integrate them into mankind's most complex systems



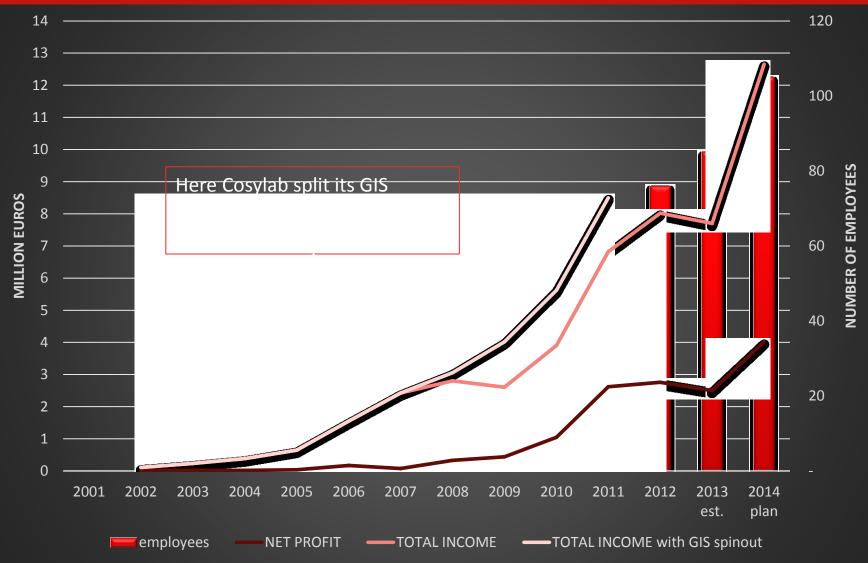

### Who are we?

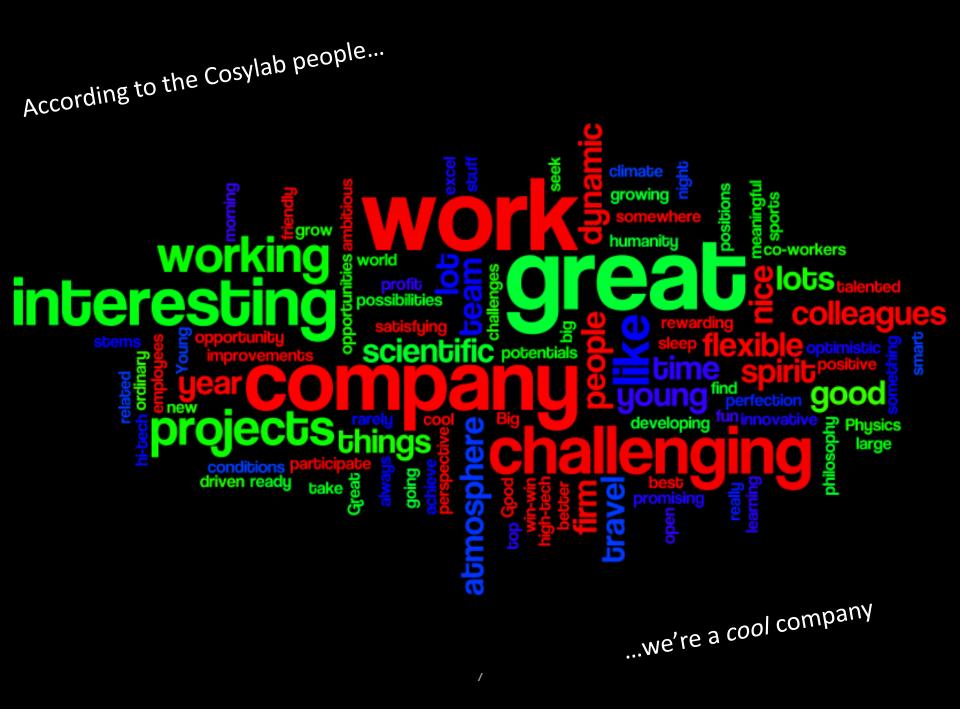
- 85 employees
  - 70 "production" FTEs effectively
  - additional ~30 students in the pipeline
- Branches in the USA and Japan








#### What are **key elements** in becoming a world-**leading** service provider in a **global** hi-tech niche **market**?


#### &

#### What is **the part of** the **engineers** and **computer scientists** to the story?



### Sustained Growth





## Build a "Cool" Company, based on Shared Understanding

#### • "Cool" Company

- interdependence, shared values
- agility, grow through change (crisis)
- *networked* people & tools



- Shared understanding scientific community & their technologies
  - 3 Technology Areas

 $\rightarrow$  The best || the only one that can do it!



### 3 Big Physics Control System Technologies

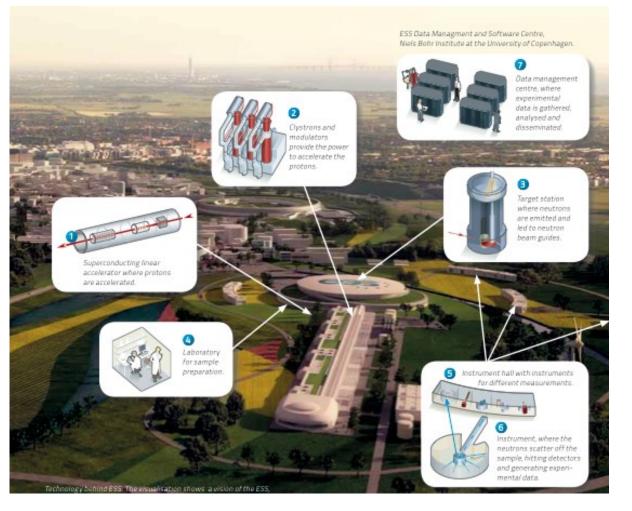
# 1. **BIG** Open Source CS Frameworks

- 2. **FAST** FPGA, fibre-optics based Timing Systems
- 3. Control Applications for users



## 1. Not just "SCADA's for Big Physics"

- Industrial customers focus on application, avoid programming
- Scientists want (and need) flexibility

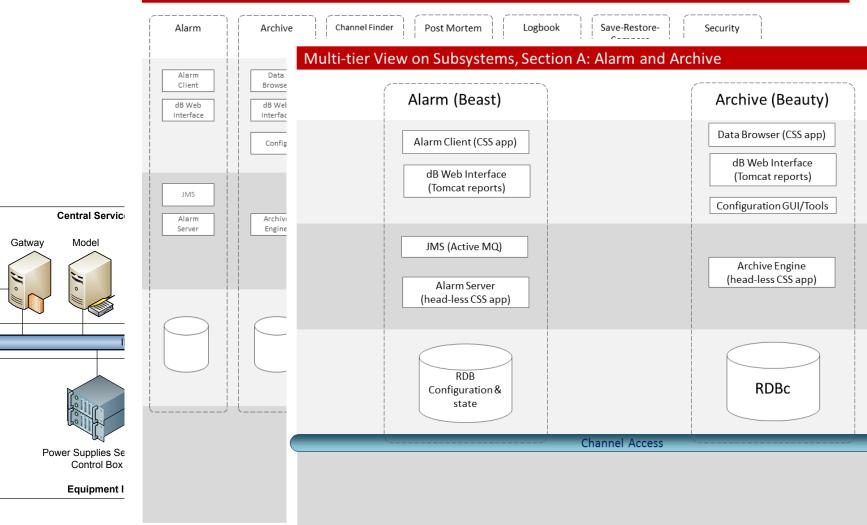

→ Open Source CS Framework, Package, Middleware, Software Bus, ...

- Technical challenges
  - not in computing power needs  $\rightarrow$  off-the-shelf PC HW
  - in managing system complexity of large, distributed CS



## Example Project:






- @SNS: 150.000 Process Variables (PV's)  $\rightarrow$  ESS ?
- Total budget: 1.4 B EUR
- subsystems of various nature (target = nuclear system)
- → flexible, scalable Control
  System for large number of
  distributed components →
  EPICS



### **EPICS & Data Management**

#### Multi-tier View on Subsystems, Overview



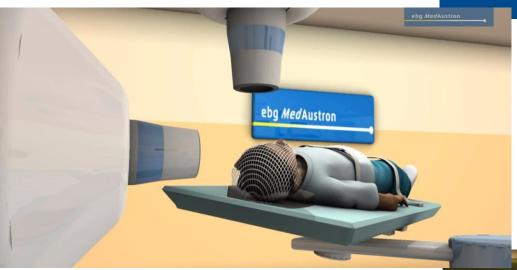
## A few recommendations on managing (technological) complexity

- Establish crucial standardization,
  - "Control Box" HW platform standardization (cPCI PlusIO, microTCA)
  - Early choice of CS framework ("no matter which one")

- While staying flexible as control system integrator
  - no "religions" on technologies
  - fact: many viewpoints in large international collaboration
  - offer shopping list of supported DAQ solutions



## 2. The extreme power of FPGA


• Need for Speed?

Free Electron Laser clock distribution  $\rightarrow \mu s$  to fs level (analog domain)

- Hardware group in Cosylab
  - FPGA programmers
  - understanding of fiber-optic communication
  - custom hardware development



## **Example Project:**



#### ebg *Med*Austron

- Ion Beam Therapy: Cancer treatment
- Wiener Neustadt, Austria
- First patient treatment planned 2015

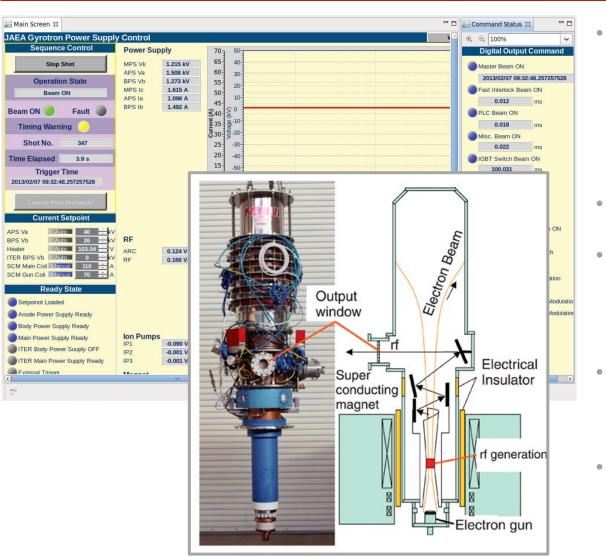
Cosylab did the development of control system for medical synchrotron accelerator 2010-...

main timing system, **power converter control**, front-end controller, LV RT communication framework, injector and synchrotron LLRF integration, FPGA programming, LV RT drivers now: dose delivery system (medical part)

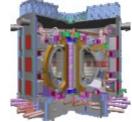




#### MedAustron: Power Convertor Control


- requires precise 1 µs synchronization of 260 magnet power converter
- critical parts of functionality FPGAs and custom designed hardware.






- host side: PXIe FlexRIO FPGA Module
  - generation of reference values and acquisition of measurements.
- device side: a custom FPGA-based front end device
  - $-\,$  gateway between the power converter and the host FPGA fiber optic link.
- host & device FPGA: custom real-time protocol
  - on fiber optic link, guarantees deterministic latency.
- host FPGA has access to a DRAM
  - buffers measurements from power converters
  - reads out new reference values provided by the system controller.
  - DRAM accessed through DMA (high throughput).

#### **3. Power to the user** Gyrotron Integration for Japan Atomic Energy Agency JAEA

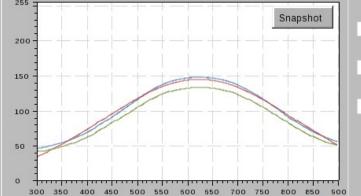


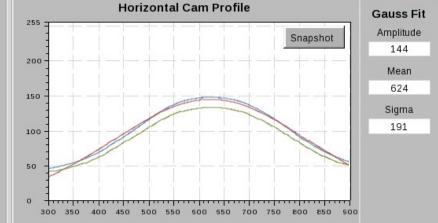
Japanese in-kind contribution to ITER project (RF source)



- Automated, millisecond level control of gyrotron operation.
- Includes integration of high voltage power supplies, RF sensors arc sensor, ion pumps and superconducting magnets power supplies.
- High continuous sampling rates (40 ksps x 16 analog inputs for 3600 secs.) with NI PXI-6259 DAQ card.
- Control of superconducting magnets power supplies (Oxford Instruments) via RS-232

## Operator / Scientist Apps


- no need for "fancy", but power
- low level access to everything (engineering screens)
- right level of (highly accurate) automation
- user configurable
  - custom GUI e.g. Control System Studio
  - scripting interface
  - interface with other tools (machine model, Matlab, excel!)


| Overtical Camera Prosilica GX1050                                                                                  |                    | Fluorescent Screer          | n Detec                   | tor                           |
|--------------------------------------------------------------------------------------------------------------------|--------------------|-----------------------------|---------------------------|-------------------------------|
| Status                                                                                                             | Acquire            |                             | Detec                     |                               |
| Image Counter                                                                                                      | 161                |                             |                           |                               |
| Image Rate                                                                                                         | 1.0                | Vertical History V Expert V | _                         | Horizontal History H Expert H |
| Acquisition                                                                                                        |                    |                             | Image Display             | Enable                        |
| Acquisition Mode                                                                                                   | Continuous         |                             | Profile Source            | ROI                           |
| Acquisition Start                                                                                                  | Start              |                             | Background<br>Subtraction | Save Disable                  |
| Acquisition End<br>Frame Trigger                                                                                   | Stop<br>Fixed Rate | Languages?<br>Java          |                           |                               |
|                                                                                                                    |                    |                             | ROI Start X               | 300 <b>300</b>                |
| Horizontal CameraProsilica GX1050                                                                                  |                    | lava                        | ROI Start Y               | 0 0                           |
| Status                                                                                                             | Acquire            |                             | ROI Size X                | 600 <b>600</b>                |
| Image Counter                                                                                                      | 161                | C++<br>Python               | ROI Size Y                | 1024 <b>1024</b>              |
| Image Rate                                                                                                         | 1.0                |                             | Lens Control              |                               |
| Acquisition                                                                                                        |                    |                             | Current Comma             | nd Stop                       |
| Acquisition Mode                                                                                                   | Continuous         | e Python                    | Command Dura              | tion 200 ms                   |
| Acquisition Start                                                                                                  | Start              | ·                           | Focus                     | + -                           |
| Acquisition End                                                                                                    | Stop               |                             | Zoom                      | + -                           |
| Frame Trigger                                                                                                      | Fixed Rate         |                             | Iris                      | + -                           |
| Vertical Cam Profile  Gauss Fit  Horizontal Cam Profile  Gauss Fit    255  Snapshot  144  144  Snapshot  Gauss Fit |                    |                             |                           |                               |

Mean

624

Sigma 191





## Back to the cool company: Company Culture

#### Our Motto:

#### Think bold, Work hard, Act modest and Enjoy life

#### What does that mean to a e.g. a Rookie engineer?

## How the Rookie engineer:

- Thinks bold: on-site, see an extra sale → put wheels in motion
- Works hard: 34/40 on paid hours  $\rightarrow$  push his TC
- Acts Modest: A lot to learn, also how this business work?
- Enjoy Life:



#### Time to Recap

What are the **key elements** in becoming a world-**leading** service provider in a **global** hi-tech niche **market**?

What is **the part of** the **engineers** and **computer scientists** to the story?

Understanding Scientific Community (Domain) and their Technologies

shared in an open culture

There are **many niches** world-wide, **larger** then **local** mass-markets

Slovenian Eng. and Comp. Sc. has what it takes

No easy ride: Growth  $\rightarrow$  Change  $\rightarrow$  Crises  $\rightarrow$  "Real" Growth

**Crisis is a Real Growth Opportunity!** 





