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- Properties of the THz radiation

- Measurement systems

- THz for substance identification

- THz for food analysis

- THz for Medicine

- THz for plasma diagnostic in nuclear fusion
- THz gap

- THz generation
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THz radiation %%%%2%{%
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References: Fraunhofer IPM (9), Smiths Detection (1), Forschungszentrum Rossendorf (1)

Significant numbers

. Frequency: f =1 THz = 1000 GHz

. Angular frequency: w = 2nf = 6.28 10*2 rad/s
. Period: t=1/f=1 ps

. Wavelength: A = ¢/f = 0.3mm = 300um

. Wavenumber: K =k/2n=1/A=33.3cm™!

. Photon energy: hf =h w = 4.14 meV

. Temperature: T = hf/kB = 48 K
where c is the speed of light in vacuum, h is Plank’s constant, and kB is Boltzmann’s constant
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THz radiation in the Universe %%%%2%{%
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Why Terahertz: Materials University 22
THz radiation can extract material properties i Te"}"f”" B R NeariR Yielle
unavailable by using other frequency bands. Ffreaveneya 10", 1%, dom, e, 10T,

Wavenumber (cm') 10° 102 109 104 105
| | | | |
This structural information quite different ~ "eeeromom 108 100 a0r 00
d - O-H stretching mode
from all other methods MoleculeriE e -
C-0 stretching mode
Low-frequency vibrations <>
. . . Deformation skelet nd torsion) CH. wagaing mode
The rotational and vibrational modes of many 000 M e
molecules, especially organic ones, are Ciysialine phonion vibratlons  PHONCL00 1. 6e0)
distributed across the THz band. e hird overlone of CH
(Hydrogen bond stretching and ¢
torsion modes) Second overtone of N-H

These modes can be observed as absorption
peaks in the THz spectra, 0.1-10 THz.

The specific location and amplitude of these

absorption peaks can be used to identify the LB ki

mOIeCUIeS' ®m Vibrational Modes
in THz Regime

Many chemical substances and explosives

exhibit characteristic spectral responses at Ju l L A k

THz frequencies woe ey U w
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Why Terahertz: Penetration University @2

 THzradiation can penetrate materials such as paper, cardboard, clothes,
plastics and others.

e This property allows by THz waves inspecting samples that are under cover or
inside non-optically transparent containers.

* Infrared waves can provide much better resolution than THz, but cannot see
through covers.

* Because the wavelength of THz waves is in the range of mm to tens of

microns, THz images of macroscopic objects provide a good level of details
and localized data.

 Theresolution is higher compared to microwaves.

(Image courtesy by tera view Ltd.)

Advanced school on laser applications at accelerators 2014



5%

£y £

Why Terahertz: Propagation Iﬁ?&%@é}g}'

* THz radiation is not ionizing (1THz: about 4meV — X-ray: 100000eV): low risk
for health

 THzradiation is very sensitive to water content:
critical for propagation in atmosphere, important for biology
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Why Terahertz: Propagation Iﬁ?n%%%gitte}}‘%

* Less water absorption (at least two orders) compare to IR and far-IR.

* Less overlap with water or other analytes absorption bands. Liquid samples can
be characterized.

* Absorption bands are more narrow in the THz range than in the IR and
overlapping of neighbouring bands

e Spectra are more species specific
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THz applications overview L?n%%%gfte};-
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J. Cunningham, “Chapter 3: Application of THz-TDS” ELEC5450
Terahertz Technology. University of Leeds.
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Continuous Wave and Pulse THz systems Iﬁ%lr.{,%%g?te}}'aa

Continuous wave systems

 CW systems operate at a single frequency and emission is continuous or
modulated.

« CW systems are narrowband and, often, they have a limited tunability but
have high spectral resolution (~10 MHz).

* Provide higher THz output powers than pulsed sources.

e Very sensitive using heterodyne receivers

* Applications: telecommunications, non- destructive testing (NDT), healthcare.
* CW systems can be active or passive.

e A passive system detects the radiation emitted by the sample under test

e An active system illuminates the sample and detects the reflected or
transmitted radiation.

* Very fast data acquisition
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Continuous Wave and pulse THz signals Iﬁ?ur.{,%gr‘g?te}}'aa

Pulse system

e Based on the generation and detection of an electromagnetic transient of few
picoseconds duration.

* The short pulse is made of many frequencies, available by a Fourier Transform of
the pulse.

* Pulsed systems are broadband and emission is not continuous.

* Applications: spectroscopy and the study of ultrafast phenomena.
* Pulsed systems are active systems only.

* Low power

* Depth and thickness information
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THz Time Domain Spectroscopy

The apparatus for TDS

Ultrafast Laser

A =800 nm, 100 fs pulse width

Lancaster E=3
University

Scanning Optical
Delay Line

pa

DC Biased
THz Transmitter

SAMPLE

=

—3

THz Receiver

N\,
l

\

Current
Preamplifier

Advanced school on laser applications at accelerators 2014

12



THz Time Domain Spectroscopy

Photocurrent (nA)
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THz for substance identification Iﬁ?n%ce%gitf}faa

THz spectra of “energetic materials”
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R. Averitt and T. Taylor, LANL
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THz for substance identification University
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THz for substance identification Iﬁ%%%@%{aa
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THz for food analysis
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University &=
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Frequency (TH2)

—— Egg 2.5mg + Doxycycline 2.5mg
--== Milk 2.5mg + Doxycycline 2.5mg
—=— Doxycycline 5mg

ooooo

S—
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v LOXycCychnne ana suiiapynaine are anuoioucs usea 10
treat chickens grown for human consumption

v'  Antibiotics can be present in chicken derived products
and mixtures

v Antibiotics fingerprints can be identified in highly
scattering food matrices

Courtesy of University of Barcelona
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THz for Imaging University ©©
-
0.3 GHz 1THz "
L m ;
In the diffraction limited case, frequency determines resolution

Images at different depths

Resolution Gallerano, THZ APPLICATIONS IN ART CONSERVATION AT ENEA
Diffraction limit at 1 THz about 300 um

| visible

THz

}? vﬁm

W. L. Chan, IOP Rep. Prog. Phys. 70 (2007) 1325-1379
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THz for Medicine

* Terahertz wavelengths are longer than
infrared and optical radiation.

» Scattering in biologic tissue is small.

* The wavelength is sufficiently short that a
submillimeter lateral resolution of more than
200 um at 3 THz is readily achievable with an
axial resolution of 40 um (3).

* Terahertz radiation is nonionizing; the power
levels used do not cause any detrimental
effects to dividing human keratinocytes and
are many orders of magnitude lower than
those in the recommended safety guidelines.

* The technique has a very high signal-to-noise
ratio because of efficient elimination of the
background noise

Lancaster %
University
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THz for Medicine Iﬁ?ﬁ%,%%?%{%

Sampie A DNAGIyzoproten

Professor Peter Weigthman (Liverpool) is leading a research by
the THz beamline and tissue culture facility (TCF) on ALICE at Daresbury,

an energy recovery linear accelerator, based on superconducting
technology.

* Frequency < 0.5 THz

* Peak power 70kW

* Average power of micropulse 23mW.

The instrument permit to ——
reveal in extraordinary detail, L
the character and chemical
processes that underlie the bureocn e e
malignant behaviour of

oesophageal cancer, which will
mean real developments in
diagnosis and the development
of therapies.
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THz for Medicine Iﬁ?n%%%gi(te}fﬂ

Basal cell carcinoma (Teraview)
' : f=0.7 THz

Optical image of
the liver sample

Visible THz malignancy in d o
Journal of Biological Physics 29: 257-261, 2003. TH z transmission
image of the

sample for a
window from 0.2
to 1.0 THz.

Proc. SPIE Vol. 4434

THz detection of subcutaneous oedema

P Taday and M Pepper, Teraview Ltd
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THz for plasma diagnostic in nuclear fusion I[j%lr{,%%gte}faa

Nuclear fusion is a
unlimited source of energy

For magnetic fusion devices such
as tokamaks and stellarators, the
magnetic field ranges from
2t08T.

Electron Cyclotron Emission
radiation is in the range ~50 GHz
to 0.5 THz

Wee = IelB/me

Plasma turbulence is a
serious issue that can
degrade or stop the fusion

process

ECE frequency is a monotonically
decreasing function of plasma
radius toward the outboard side.
Each frequency corresponds to a
particular horizontal position.

CCFE, UC Davis

R (distance to axis of symmetry)
Intensity of the magnetic field as a function of the radius
22
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THz plasma diagnostic %%%%2%}'%

Thomson scattering to detect density
fluctuations of the plasma.

Radiation (k;) incident on density fluctuations (k)
scatters a small amount of power (k)

Scattered signals

4-pixel subharmonic s i
mixer array

"""

.......

L\ LIS e

/ Probe beam \

ucpavis  Launching optics Receiving optics

The UK Engineering and Physical Sciences Research Council (EPSRC) funded project “THz
backward wave oscillator for plasma diagnostic in nuclear fusion”

aims to design a powerful and compact THz source to be used in tokamaks to replace the
bulky FIR laser and increase the region of diagnosis
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The “THz” gap
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THz generation: solid state Iﬁ?ur%,%%gfg

Solid state: uW of output power up to 0.8 THz

i $ |
| |

F'—llll' -'l:rll!:.[

n : | sy ‘
: l___.llll..]. ‘
B |

~

Nt 3 i —

InP HBT and InP HEMT

Deal, Solid--State Amplifiers for Terahertz EIectronic:
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THz generation: photomixing Iﬁ?ﬁ-{,%%@%{%

Photomixing: uW of output power above 1 THz and
optical-to-THz conversion efficiency is 1076 — 10->

®y
optical E’(\"‘“ ) e

wl pulse\
- } %;MWWW \/\/\/\/\/ ;
w2 (il }

/

/ -
/ photomixer

. Log spiral antenna

Photomixing is the generation of continuous wave Terahertz
radiation from two lasers. The beams of the two lasers are
mixed together to create a beatnote in the THz frequency

range. L | ‘
Eopl(t) I I p !
|
wTHz = w1l - w2, when wl > w2
The most common light sources are diode lasers in .
PTH:(t) >

the spectral range between 800 and 850 nm

A typical photomixer includes an antenna structure of metal on a LT-GaAs layer grown on a
SI-GaAs substrate. A silicon hyper-hemispherical lens is attached to the back side of the
substrate. A commonly used antenna structure for photomixing is the logarithmic uniplanar Ep, (1) VAV 2V
spiral antenna (log-spiral antenna) with interdigitated electrode fingers

> !

Laboratoire de Physico-Chimie de I'Atmosphére Purdue
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THz generation: Quantum cascaded laser U

Lancaster k=
niversity

Quantum Cascade Laser (QCL): uW of output power

above 1 THz \ Quantum well
A guantum cascade laser (QCL) is a semiconductor Electron ‘\
enters——1=

heterostructure laser. Laser+—1) Light emitted

transition —L—w Q/

| N
It needs cryogenic temperature \Electron N\
tunnels lr
N T

et Ty '\\
| ) Upper energy level

Lower energy Ievel‘

N\

Pros: solid state technology
Cons: limited above 1 THz

cryogenic temperature
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THz generation: Free electron laser Iﬁ?urb%%g}g}“’"

Free-electron lasers (FELs) use a relativistic electron
beam passing through a wiggler

The wiggler consists of a series of magnets arranged to
supply periodic, transverse magnetic field, to generate

coherent electromagnetic

. Beam dum
Superconducting cavity Stops el ectror';_ in

preaccelerator water-cooled block
of metal
g /— Superconducting \

RF cavity

Gun

Injector ( OUTRUT
Laser pulse releases
ekiﬁtrgns f;lor?] phﬂto- Accelerator Optical
cathode. High voltage ; - : :
accelerates electrons gﬁég;?gr:\{: glz‘gtt;gﬁs FEL Caviy maTor
to a few MeV. to desired energy Sinusoidal magnetic

(10 to 400 MeV field converts electron
energy to light
(10 um to 0.1um)

Cons: very bulky PROCEEDINGS OF THE IEEE, VOL. 87, NO. 5, MAY 1999
Pros: tunable and high power
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THz generation: Vacuum electron devices %%R,%%g}f;

In the range 0.1 — 1 THz vacuum electron devices are the solution for generating power at Watt
level

Dimensions are a function of the wavelength:
100 MHz =0.0001 THz A =300cm

1000 GHz=1THz A =300 um

Perfectly scalable.

It depends only if a technology is available
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Energy/particle (keV)

Vacuum electron devices: working mechanism University
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Lancaster E<}
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ve X Vo < ¢ (v, =5.93-10°y/Vj)

Uph ~ Vo

Ve = electron velocity

RF field

electrons e

time
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Vacuum electron devices: the bunching {j?nr{,%‘i‘.gfg}‘
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THz vacuum electron devices: challenges University #©

Fabrication processes with high accuracy and precision at micrometric level
* Available

High quality cathode to generate cylindrical electron beam or sheet electron beam

with high beam current and narrow diameter
* Available

Reliable and repeatable assembly
* Promising

Low beam voltage e-gun (10-15 kV) for portability
* Available

Control of the surface roughness of the metal walls to reduce the losses
. (100 nm skin depth at 0.6 THz, not more than 50 nm surface roughness)
* Available

High vacuum level (107 Torr)
* Available
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THz SWS: the double corrugated waveguide L%R,%E}gfg-
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THz waveguide fabrication Iﬁ?n%%%gfg}'

e
DXRL (Deep X-ray Lithography)

B

LIGA mask

Soleil Synchrotron

Gold on Beryllium

Gold on glass - s
g 15 hrodlohon _—synchrofron radiation 2. Development

| N N
] i i i i w@“’ L - lithograpy
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4. Mold insert

absorber pattern

mask membrane

X-ray resist
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conducting substrate
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| - Electroforming

resist
structure

mold cavity

F100mm

6. Mold separation

structure —

GA - Molding

o
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THz fabrication: DXRL (Deep X-ray Lithography) Iﬁ?n%%%gfte}f 5

Scanning electron microscope pictures of the double corrugated
waveguide.
The height of the PMMA teeth is 50um.

‘_/; F1 Lei1
THALEGSS™ T SKU X858 11mm

Overview of the self standing PMMA after X ray lithography and
development.

THALES-TRT 1.0kV 31.7mm x500 SE(L) I

%,; THALES-TRT 1.0kV 34.9mm x130 SE(L)
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1 THz vacuum tube amplifier Iﬁ?n%%%gﬁe}f%
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Backward wave oscillators State of the art University &%
e 1984
ImW 0.9 THz Carcinotron
Thales (FR)
Backward wave
g
e 1990 .
THz BWO 00 02 04 o;fh 0,8 o 1:2" 1;4';‘,‘;.'6) 18 20
(a few mW @ 200 -1100 GHz) "
Istok (RU)
e 2009

52mW 0.656 THz Backward =

wave oscillator
Northrop-Grumman (US) Gun $1.4cm Waveguide
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THz Applications Iﬁ%{-b%%@%}'%

Thank you!

Stay updated on THz applications:

E-MIT website http://www.engineering.lancs.ac.uk/e-mit/

Twitter Claudio Paoloni @ClIPaoloni
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