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‘ Synchrotron Radiation

Phenomenologically:
A consequence of the finite
value of the velocity of light.

Electrical field lines
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nchrotron Radiation: Electrical Field Component
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‘ Retarded Potentials!

A. Meseck

1873 = J.C. Maxwell formulated his unifying electromagnetic theory.

1887 = H. Hertz succeeded to generate, emit and receive again
electromagnetic waves.

1898 Lienard Independently, derived the expressions for
1900 Wiechert “retarded” potentials of point charges.

Lienard-Wiechert Potentials relate the scalar and vector
potential of electromagnetic fields at the observation point to
the location of the emitting charges and currents at the time of
emission.
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‘ Retarded Potentials

Lienard-Wiechert Potentials
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‘ Moving Charge

A. Meseck

updates the direction of the field toward the
instantaneous position of the charge
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N Rediation

Poynting Vector
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N Radiation in a Solid Angle
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‘ Observed for the First Time

April 24, 1947
visible radiation was Observed for the first
time at the 70 MeV Synchrotron built at
General Electric.
Since then, this radiation is called
Synchrotron Radiation.

The theory was developed by
lvanenko, Pomeranchuk 1944,
and Schwinger 1946.
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N\ Radiation Power

Synchrotron radiation power

Power emitted is proportional to:

C, 4
P}- =C ' 'Ez
27 p
c=4n_T. _ggsg.10-5[—mM_ >
3 (me?) [GEVS]

Bending magnet Energy loss per turn:

Uazq-%q

p = Bending radius
E = Electron beam energy

Y = Lorentz factor
Electron beam
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N\ Wiggler and Undulator

Oscillation frequency: Qw=kyp - €

A bw
S
Trajectory -
Undulator Brilliance ~
0. - 1 h-€-B K~ parameter
" Y 2m-Mg-C oy
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Res. Wavelength:
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Brilliance ~ N2
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‘ Synchrotron Radiation Sources
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‘ FEL- Interaction

Interchange between electron beam and radiation field.:
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‘ FEL: Equations qf Motion

d N - ky )
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‘ Amplification ( Low Gain )

* The amplification of radiation intensity depends on the electron density.

 For small electron densities the amplification per turn is small by the Undulator.

* For Ay > 0 a net intensity amplification is expected.

Separatrix Separatrix

0 0

T —TU T
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‘ Low Gain

- Ay#0
Ay /N 2
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to the negative derivative of the A-r)/ A —

“resonance-curve” of the spontaneous

undulator spectrum.
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‘ Low Gain FEL

> :-ﬂﬁ@é“’

electron dump

electron
accelerator

irror
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‘ Low-Gain FEL Example : ACICE

ALICE accelerator and FEL layout

EMMA non-scaling
FFAG accelerator

David Dunning

1* arc: TBA on FEL 2011

translation stage

Bunch
compression
chicane

Pllaser

......... Linac: 2 8-cell SC
''''''''''' L-band cavities

P +27.5MeV, ER

P Booster: 2 8-cell SC L-
band cavities —6.5MeV

ms Undulator
{7

Electron path




‘ Mirrors for FELs

Wellenldnge / nm
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N\ High Gain - SASE FEL

* Extremely high electron densities lead to a permanent amplification of the

radiation intensity.
* The electrons are bundled into packages: micro-bunching

* The electrons radiate coherently.
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‘ High Gain - SASE FEL

* Extremely high electron densities lead to a permanent amplification of the
radiation intensity.

» The electrons are bundled into packages: Micro-bunching

» The electrons radiate coherently.

electron beam

undulator

L d e e

s M e
spontaneous e
emission enerqgy dump

modulation / bunching

H (4)

coherent emission

radiate -
Ing;( pgwerd) saturation
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‘ SASE FEL: Efficiency Parameter

KA fundamental scaling parameter f(h
a SASE FEL is the dimensionless
Pierce parameter:

1/3

e a

0

2
3222

\& 4

/Once the FEL interaction has startem
the radiation intensity starts to grow
exponentially along the undulator.

The e-folding length of the radiation
power called the gain length is given

by I 7 ﬂ,u
& ; 47z\/§,0 e
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‘ SASE FEL: Slippage , bandwidth, cooperation

me radiation propagates faster thaﬁ
the electrons. It “slips” by A per
undulator period; thus electrons
communicate with the ones in front,
only if their separation is less than the
total slippage:

_ S=Na o

Gsingle shot spectrum of a radiatioh
pulse having the duration T contains
spikes with a typical width of 1/T. The
number of spikes in the spectrum and
thus in the pulse profile is about:

2rCT 2p

@e high gain FEL cuts and amplifies\
only a narrow frequency band of the
initial spectrum. The typical bandwidth
of the amplified spectrum is of the

order of :

A

- 4
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/Each spike (wavepacket) has a
length of A / 41tp. Thus, the
cooperation length (slippage in one
gain length) is defined as:

I
IC :—g/lz
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A

A
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SASE-FEL Example : FLASH =
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‘ Spectral Properties of the SASE -FELSs
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- distribution of the electron bunches.
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‘ Benefits of Seeding
HGHG

w
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‘ High Gain Harmonic Generation (HGHG)*

Kurzer Laserpuls (Ti:Sa)
intensiver hochbrillanter Elektronenstrahl

() ) / Z
- y AW W 4

Modulator Dispersive Strecke Radiator

w,
.
> Y -
*
o S
Lo

-T Y T -nTC nT
*Developed by L.-H. Yu et al.,BNL

Phys. Rev. A44/8 (1991) 5178
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N Coscaded HGHG-FEL

1.Stage 2.Stage Final Amplifier
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‘ Seeding : Radiation

=

e
2. Coherent emission -
(fundamental or harmonics)
3. Amplification Radiator
Dispersive section

For given period length, the
desired Wavelength

. / determines this ratio via
Expected Power: P, ~ 2 resonance condition.
con. n

Microbunchi Electron beam brightness is

g ICTO dunc mr? determined by the injector and
epends on t € accelerator.

energy modulation.
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‘ Seeding: Electron Beam

1. Energy modulation
2. Coherent emission
(fundamental or harmonics)

(1Y

3. Amplification Radiator
Dispersive section
necessary Energy modulation by Total energy deviation at
Modulation: the seed: the radiator entrance:
:> Ay ~ K I:)seed 2 A}/Z
A)/ZHG}, Y _Lmod " O, ot = O'},-l-
Y s 2
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N Linking Bunch, Seed and Undulator

Gain length [m]

A. Meseck
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‘ Fresh Bunch Technique

The seeded bunch partis nolonger __ Use a long bunch and shift the
suitable for a further seeding process . interaction region for each stage.

1st Stage

Electron bunch

2nd Stage

Final Amplifier

<

seed

o
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N\ HGHG-FEL Example : FERMI
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‘ Modulator Cascade — ECHO Scheme

Ch|cane Chicane

4_- : %“w
Modulator 1 p——]
_____,_.'
+ Chicane 1 —
: —
- =
0.00.20.40 10‘ .60.81.0
05¢
00 R Z(’I e
Modulator 2 :
+ Chicane 2 00 05 10
_4 |l — ¢4 |G | _MJ
G. Stupakov 0.00.20.40.60.81.0 0.00.20.40.60.81.0 0.00.20.40.60.81.0
FEL 2009
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N\ EEHG Example : SOUV-FEL

AN N

0.4 4
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Intensity (a.u.)

1.0 1
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0.8 1

AN

vV
e i s Sl
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JUNE 2012 | p 360-363
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M
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Figure 3 | Spectra for FEL radiation. a,
Experimental results (red line, HGHG;
blue line, EEHG,; green line, intermediate
state between HGHG and EEHG). b,
Simulation results (red line, HGHG; blue
line, EEHG,; green line, intermediate state
between HGHG and EEHG).
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‘ Signal to Noise Ratio and Seed Power

For successful seeding we have to ensure that
* the phase correlation and pulse length are conserved!

* the shot-noise effects are suppressed!

Rl _1IR
Pn out n2 Pn in

e Limits the total harmonic number

 High seed power required

* E. Saldin et a., Opt. Comm. 202 (2002) 169
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‘ Self-Seeding Example: LCLS

25 mm Gas
14 GeV 1GW 5 MW 4 GW

_ S detector
X-ray
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Electron beam

———————

800 nm

~10 md HHG process

" scan I scedon
W scan 1 seed o
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¥ scan 2 seed off
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Seeding with HHG-Sources , Example: sELASH
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‘ Future Application of LASERS

Source

Laser-Compton source
Design of a clean, high-
brightness light source is
presented for extreme
ultraviolet/soft X-ray
(EUV/SXR) lithography
research and mask
inspection.

Design of high brightness laser-Compton source for extreme ultraviolet

and soft x-ray wavelengths

CW Electron | =

Kazuyuki Sakaue ; Akira Endo ; Masakazu Washio
J. Micro/Nanolith. MEMS MOEMS. 11(2), 021124 (May 03, 2012).
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CO, Laser
gsSuper- Cavity

High Brightness
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A Y
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» Recirculate
| oy s LY . ................. ps C02 Laser for ERL
> L cav .
Reflection Transmission
_ -' reng
—
Input

Curvature:p
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‘ Future Application of LASERS in FELs?

Pump laser pulse

The wavelength in the electron rest frame

A‘e]ec — )\pump
y[1 — B cos(0)]

In the lab frame the wavelength, neglecting recaoill,
of the scattered radiation parallel to the z-axis:

Qtab

A . Aelec _ /\pump(l T ﬁ)
T (1+B)y 1 — Beos(Pld)

hpump 1 — Beos(0'™) The primary effect of the

M = puimp — ~ Qlab 2 - - -
Ax-ray 1 -8 7y ponderomotive impulse which
occurs when the pump laser pulse
K2 Ohgoray)2ren'®\ 7 starts to overlap with the electron
- ( Aot ) bunch is to decrease the axial
velocity of the bunch. This effect has
5 elec The Lorentz invariant gain been included using:
= = 47‘[\/§p per wavelength or per cycle
Lg of interaction. % 1 |4

Nearly copropagating sheared laser pulse FEL undulator for soft x-

JI—(B9r V1+K?
rays , J. E. Lawler et al., J. Phys. D: Appl. Phys. 46 (2013) 325501 (11pp)
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‘ Future Application of LASERs in FELs?

2
C2: 1 :CO:CO
2
Eof Mot & D

n=n"+in"=x,/gu

Laser
Super- Cavity

| ® _._.‘i ’_ c=¢&"+1&"
‘ “" ~ ..‘ ll,l:/,l,‘i‘iﬂ”
g'u‘+,u’g <0 = n<0

As a not-laser-physicist | ask myself:

« How does the developing microbunching Permittivity g(w):
change the speed of the light inside the
laser-cavity?

« Do we expect some kind of equillibrium e(w) = 1— |
after some time? w(w+tiy) _

Do we need to adjust the the cavity length - Damping terrr
fast, slow, at all?

2
Wy
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‘ Exciting Future Application of LASERS

a Wake-field cavity

All-optical Compton gamma-ray source Relativitis lecthon blich

K. Ta Phuoc et al. @W I
. Gas

“Here, we present a simple and compact
scheme for a Compton source based on
the combgs

Laser pulse (fs)

Back-reflected laser pulse

hundreds of keV and with a 10,000- fold
increase in brightness over Compton X-ray <
sources based on conventional

accelerators” 4

Foil

Laser pulse Detector
-I _j X-ray beam
Helium gas jet

(3 mm) Magnet

Deflected electrons

NATURE PHOTONICS | VOL 6 | MAY 2012 | p 308-311
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Plasma mirror

High energy
X-ray beam
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