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1920s: Proposing the idea of
acceleration using oscillating
fields

Electron gains energy from
cascaded cavities along the
acceleration line.

The basic concept of the various
modern accelerators L

g@-.}p abals ”
-

C_:F_El- Ultrafast Optics and X-Ray Division



Motivation 4/21

Modern accelerators are based on RF technology and operate in this wavelength regime.

Is RF frequency domain the optimum choice for acceleration?

Some advantages: Some disadvantages:

* Available high-Q cavities * Large dimensions for high energies
* Available efficient sources e Great number of devices for power
* Acceleration of big bunches supply

Decreasing the operation wavelength results in smaller required cavities.

4

Less energy is needed for filling the cavities and acceleration.
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Extensive studies were carried out recently on optical acceleration of particles.
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Problem: Small cross section of optical beams ms) acceleration of a very small amount of
charge is feasible using laser-plasma acceleration.

THz acceleration of particles seems to be a good candidate.
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The main challenges in this regime:

1. Large loss of the materials
2. Limited available THz high power sources

The second difficulty is recently tackled by using optical rectification techniques to design
THz sources.
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Fig. 1. (Color online) Measured and calculated THz energy

Versus pump energy.

Short THz pulses can be efficiently generated from a reasonable laser intensity.
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We need to accelerate electrons using short pulses.

4

We are no more in the continuous wave (CW) regime.

4

Pulse Acceleration of Electrons should be studied.

Let us consider one electron experiencing a pulse with a longitudinal Gaussian field:

g
dt
dz

dt

E t — ’
il exp {411&2 () ] cos(wt — kz + o)
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Be, with Zlt=0 = 20 and [B|i=0 = Po
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In contrast to the CW regime, we solve
the equations numerically. 1

0.98~

Let us assume the following parameters: =
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Optimization b

o Very many parameters are involved in the
acceleration level of electrons: v, v,, GVD, a,

pr Ve
Zoand
o Best fitness function for optimization: final
energy of one electron U U
o We numerically solver the problem of one - 2eE(z,0,t)ot
ﬁﬂ—i—l - /671—1 _ 3
electron. mecyy

Zn+l = Zp—1 T 26n05t
o Final energy of the electron is used as the
figure of merit for the group of parameters.
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Electron bunch acceleration

o Update of electron motion with time: Cash-Karp Runge-Kutta method

o Generating a bunch of electrons with Gaussian distribution: Box-Muller
method.

o Very large number of particles (107): we use macro-particles.
o We consider the following initial condition:

» Mean initial energy = 1MeV
» Initial energy spread = 0.1%

» Initial bunch spread is a cube of 30umXx30umXx30um
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Dispersion curve Energy of a bunch (20mJ THz pulse)
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Energy of a bunch (20mJ THz pulse)
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Amount of charge we can
accelerate in the waveguide?

Without space-charge: unlimited
With space-charge: limited

What is the limit?

We stop a macro-particle as soon
as it hits the walls of the
accelerator.

Mean beam energy (MeV)
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I 16pC is by far more than what we need. I
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Rectilinear Compression

= = =
|:back |:front |:back |:front |:back |:front
2 2 A o
Compression and Compression and

Maximum Compression

deceleration acceleration

% (_:F_El— Ultrafast Optics and X-Ray Division

SCIENCE



THz Compression in waveguides 17/21

Maximum compression
o Compressed bunches: desired for the good

quality in the applications

o Electron bunches can be compressed using THz
pulses

o Simultaneous acceleration and compression is
possible.

o For compression, the acceleration level needs to \

be sacrificed. Maximum acceleration

o Main obstacle against bunch compression: space-
charge forces

We study the simultaneous bunch acceleration and compression in THz waveguides.
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Mean initial energy = 1MeV
Initial energy spread = 0.1%
Initial bunch spread is a cube of
30pumX30pumX30pum

» 20mJ 10 cycle THz pulse
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Mean initial energy = 10MeV
Initial energy spread = 0.1%
Initial bunch spread is a cube of
30pumX30pumX30pum

» 20mJ 100 cycle THz pulse
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* With the emergence of high power THz sources, THz acceleration seems to be a
promising candidate for compact devices.

* Cylindrical Dielectric-loaded metal waveguides are able to produce the acceleration
gradient needed in many applications.

* With a 20mJ-10cycle THz pulse, an electron bunch can be accelerated from 1MeV to
~9MeV.

* The same device can be used for compressing the electron bunch based on rectilinear
compression.

* 50 times Compression of a 1MeV bunch and 62 times compression of a 10MeV bunch
are demonstrated.

* More details about the results:

Wong, Liang Jie, Arya Fallahi, and Franz X. Kértner. "Compact electron acceleration and bunch compression in THz

waveguides." Optics express 21, no. 8 (2013): 9792-9806.
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