LA³NET Workshop, April 28 – 30, 2014, HZDR, Dresden

Radiative Particle-in-Cell simulations on laser-plasma interactions

Alexander Debus

Richard Pausch^{1,2}, Axel Hübl^{1,2}, Klaus Steiniger, Felix Schmitt³, Heiko Burau^{1,2}, René Widera¹, David Pugmire⁴, Guido Juckeland³, Wolfgang E. Nagel³, Michael Bussmann¹, U. Schramm¹, T. Cowan¹, R. Sauerbrey¹

¹ Helmholtz-Zentrum Dresden – Rossendorf
² Technical University Dresden
³ ZIH, Technical University Dresden
⁴ Oak Ridge National Laboratory

Center for Information Services & High Performance Computing

HELMHOLTZ | ZENTRUM DRESDEN | ROSSENDORF

Simulating the radiation from Laser Plasma Interactions

shedding new light into the dynamics of laser-accelerated electrons

- **Quantitatively** predict spectral intensities
- Link them to specific regions in phase space
- Input to new diagnostic methods

- Radiation spectra give insight into the momentum distribution
- Spectra are accessible in experiments

Simulating the radiation from Laser Plasma Interactions

shedding new light into the dynamics of laser-accelerated electrons

This allows to study

- e⁻ dynamics during the formation of the Wakefield
- Injection of the e⁻ into the Wakefield
- Coherent motion of the e⁻ during acceleration (betatron oscillation)

Simulating

- All macro-particles
- Spectrum: IR X-ray
- Multiple observation directions

Could this give quantitative data of electron injection?

Classical radiation – accelerated electrons emit radiation.

So what is the challenge in radiation from plasmas?

Several 10³ - 10⁵
 simulated electrons

- Several **GB** of electron trajectories
- \rightarrow Post-processing possible.

 10⁸ - 10¹⁰ (macro) particles in a plasma

- Several **100 TB** to **PB** of electron trajectories
- Processing must happen online during PIC.

Solution - Use graphic cards (GPUs) to parallelize calculations

PIConGPU picongpu.hzdr.de

Radiation code implemented as a plugin for PIConGPU

Relativistic 3D3V Yee-Lattice

Boris & Vay Pusher

Villasenor-Buneman, Esirkepov and Lehe Maxwell solver

Particle Shapes NGP / CIC / TSC / PCS

Available for download. It's open source!

HDF5, Live Visualization

PIConGPU plugin fully integrates classical radiation emission

- Calculates online the spectra of all particles in a 3D-PIC simulation.
- Discrete Fourier Transform enables logarithmically-scaled wavelengths from IR to X-ray.
- Arbitrary number of directions and wavelengths can be computed.

→ spectral sky-maps

 Coherence and polarization of radiation is fully supported!

Exploring radiation from Laser-Wakefield acceleration

Scaling up to petaflop performance

Radiation emitted by the Kelvin-Helmholtz instability

2nd largest supercomputer on earth

TITAN Cluster at Oak Ridge National Laboratory

Important in astrophysical jets

Scaling up to petaflop performance

Radiation emitted by the Kelvin-Helmholtz instability

Peak performance

(performance at double precision)

on 18,432 GPUs

Grid 8000 x 768 x 768 cells

Particles 2 e⁻ and 2 p⁺ per cell 37.7.10⁹ electrons

Radiation 481 directions

18432 GPUs 512 frequencies (near all GPUs on TITAN)

Alexander Debus · Laser Particle Acceleration Division · www.hzdr.de/fwt a.debus@hzdr.de

Member of the Helmholtz Association

Skymap with Particles

What do we see in this huge amount of data?

- K-plane along a great circle
- Logarithmic-scale
 (0.014 –14 ω_{pe})
- Lots of structure in spectrum

- Boost pattern of synchrotron radiation in direction of the plasma flow
- Angle between coils gives information on relativistic velocity

After 500 time steps

a.debus@hzdr.de

Apart from investigating the dynamics of big roaring plasmas...

All these GPU-driven techniques are great for designing light sources !

Traveling-Wave Thomson-Scattering (TWTS)

Using pulse-front tilted petawatt lasers in side scattering geometries for arbitrarily long interaction distances

laser pulse

Traveling-Wave Thomson-Scattering (TWTS)

Using pulse-front tilted petawatt lasers in side scattering geometries for arbitrarily long interaction distances

TWTS gives control over scattered photon energy and bandwidth

Brilliances of TWTS sources are comparable to 4th gen. synchrotrons

Page 18

Alexander Debus · Laser Particle Acceleration Division · www.hzdr.de/fwt a.debus@hzdr.de

Member of the Helmholtz Association

TWTS properties enable compact free-electron laser

Alexander Debus · Laser Particle Acceleration Division · www.hzdr.de/fwt a.debus@hzdr.de

Upcoming talks

"Single-shot fs electron bunch diagnostics"

14:40, Today Omid Zarini

"Laser-Thomson backscattering source at HZDR"

11:30, Tomorrow Axel Jochmann

Summary

- Radiative particle-in-cell simulations allow to calculate the emitted radiation of laser plasma interactions from all particles in a simulation.
- Our GPU-only simulation code PIConGPU makes it possible to explore plasma radiation from IR to X-ray wavelengths across "sky maps" including coherence effects.
- Example 1 Laser-wakefield accelerator
- Example 2 Largest KHI-PIC simulation ever performed

7.2 PFLOPS double precision 1.4 PFLOPS single precision

Time-resolved spectra can be correlated to particle dynamics.

