New science opportunities at XFELs: probing ultra-intense laser-solid interactions

T.E. Cowan^{1,2}, T. Kluge¹, L. Huang^{1,3}, C. Gutt^{4,5}, J. Metzkes¹, U. Schramm^{1,2}, M. Bussmann¹ ¹HZDR, ²TU-Dresden, ³SIOM, ⁴DESY, ⁵Uni Siegen

on behalf of the Helmholtz International Beamline for Extreme Fields (HIBEF) at European XFEL

HZDR

LA³NET TW3: Novel Acceleration Techniques HZDR, Dresden April 28-30, 2014

Prof. T.E. Cowan | Institute of Radiation Physics | www.hzdr.de

HIBEF: Relativistic laser-matter interactions

Mitglied der Helmholtz-Gemeinschaft

Page 2 LA3NET TW3, Dresden, 28.04.2014

<u>Motivation:</u>

Understand ultra-intense laser-matter interactions inside of solid density targets with *coherent* x-rays from XFELs

Examples:

- 1. Physics at laser-matter-interface and in buried-layers [L. Huang et al., Phys. Plasmas 20, 093109 (2013)]
- 2. Ultrafast electron dynamics at solid-density* [T. Kluge, C. Gutt, L. Huang et al., Phys. Plasmas **21**, 033110 (2014)]
- 3. Ionization dynamics probed by resonant CXDI [...work in progress...]

Extreme Conditions with Ultra-intense & High-energy Lasers

Extreme particle beams

Laser Blow-off plasma Target

Plasma Plasma Plaser Plaser Plaser

Extreme radiations

Ambient elastic plastic New Voids crystal phase phase phase Shock drive Release wave Strong Fields Extreme currents fast current laser pulse scatteri collisions slowing return current

Mitglied der Helmholtz-Gemeinschaft

Page 4 LA3NET TW3, Dresden, 28.04.2014

HIBEF at the European XFEL

Page 5 LA3NET TW3, Dresden, 28.04.2014

HIBEF at the European XFEL

HIBEF: New Experimental Capabilities

XFEL-based probing \rightarrow faster, brighter (focused), coherent

XFEL combined with high-power laser drivers will open a new frontier of Science at Extreme Conditions

T.E. Cowan | Helmholtz International Beamline for Extreme Fields (HIBEF) at European XFEL

Important Challenge - Advancing hard X-ray Techniques

→ Adapting techniques from: Synchrotron-, Laser-, FEL-, & Ultrafast-science communities

Example: XPCS X-ray Photon Correlation Spectroscopy

- Single-pulse x-ray Split & Delay
- Self-seeding (full coherence)

Small Angle X-ray Scattering (SAXS)

- \rightarrow Coherent diffractive imaging
- \rightarrow X-ray holography
- \rightarrow e.g., XMCD for magnetic domain imaging
- $\rightarrow S_{ee}(q)$ electron correlation function

Helmholtz International Beamline for Extreme Fields at XFEL

Unique Science Opportunities:

- Relativistic Laser-Plasmas
- New Phases of Matter
- Ultra-strong Field Physics
- Material Dynamics & Damage
- Element-selective Magnetism

X-FEL User Consortium

HZDR, DESY, HIJ, XFEL, + over 90 institutions in 19 countries

after ion impact

HIBEF User Consortium

Co-Pl's: T.E. Cowan, U. Schramm (HZDR), E. Weckert (DESY), T. Stoehlker (HIJ), J. Wark (UK Consortium)

Germany: 27

CFEL, DESY, FZJ, GFZ, GSI, HIJ, HZB, HZDR, MBI, MPIC, MPIK, MPI-S, MPQ, MPSD, Bayreuth, HU Berlin, TU Darmstadt, TU Dresden, Duisburg, Frankfurt, Freiburg, Hamburg, FSU-Jena, LMU-Munich, TU Muenchen, Rostock, Siegen

Europe & Assoc. Countries: 42

PSI, EP-Lausanne (CH); IOP-ASCR, CTU-Prague (CZ); CLPU-Salamanca, UPM-Madrid (ES); IRAMIS-CEA, CEA-Arpajon, CELIA-Bordeaux, ESFR, Jussieu, LULI, UPMC, LNCMI, U Toulouse (FR); U Pecs, U Szeged (HU); Weizmann (IS); Sapienza-Rome (IT); MUT-Warsaw, NCBJ-Swierk, U Wroclaw (PL); IST-Lisbon (PO); JIHT-RAS (RU); Stockholm, Umea, Uppsala (SE); Cambridge, Edinburgh, Imperial College, Queen's Univ Belfast, University College London, Oxford, Plymouth, STFC-RAL, SUPA, Strathclyde, Warwick, York (UK); Eu-XFEL, ELI-DC, EMFL (EU);

Asia: 10

SIOM, IOP-CAS, Peking Univ, SJTU (CN); Tata IFR, RRCAT (IN); GSE Osaka, ILE-Osaka, KPSI-JAEA, Univ. Kyoto (JP);

North America: 17

Alberta (CAN), BNL, UC Berkeley, Carnegie Inst. Wash., General Atomics, LANL, LBL, LLNL, U. Michigan, ORNL, OSU, Rockefeller U, SLAC, UCSD, UNR, UT Austin, WSU (US)

>100 Institutions, >400 faculty/scientists, >300 students

		Nr	%	%
DE	HGF	74	10.9	33.3
	DE	152	22.4	
EU	UK	73	10.8	33.9
	FR	39	5.8	
	ES	29	4.3	
	SE	28	4.1	
	СН	10	1.5	
	CZ	10	1.5	
	PL	10	1.5	
	RU	10	1.5	
	HU	9	1.3	
	IT	6	0.9	
	XFEL	6	0.9	
Asia	CN	94	13.9	17.8
	JP	22	3.2	
	IN	5	0.7	
US	US	101	14.9	14.9

*as of 3/15/2012

Mitglied der Helmholtz-Gemeinschaft

Page 11 LA3NET TW3, Dresden, 28.04.2014

<u>Motivation:</u>

Understand ultra-intense laser-matter interactions inside of solid density targets with *coherent* x-rays from XFELs

Examples:

- 1. Physics at laser-matter-interface and in buried-layers [L. Huang et al., Phys. Plasmas 20, 093109 (2013)]
- 2. Ultrafast electron dynamics at solid-density* [T. Kluge, C. Gutt, L. Huang et al., Phys. Plasmas **21**, 033110 (2014)]
- 3. Ionization dynamics probed by resonant CXDI [...work in progress...]

Ultra-Intense Laser-Matter Interactions - Key Challenges

10¹³ A/cm², > 1000 T, 10¹³ V/m, ~keV solid density

→ Current filamentation
 → Ionization dynamics

Essential Questions:

- return-current generation, neutralization (ionization, resistivity, heating)
- filament formation & propagation
- particle & energy transport
- e-e & e-i equilibration
- quasi-static resistive fields
- magnetic diffusion (relaxation, >6 ps)
- radiation transport

- ...

- Extreme transients & gradients
- Transition through cold-WDM-hot
- Extreme magnetizations

→ Ultrafast probing of Z*, j_e , T_{e_j} B, inside solid-density plasma, time & space resolved, on the *plasma scale*

Small Angle X-ray Scattering & Coherent Diffraction Imaging

- SAXS: Small angle x-ray scattering Q-range < 0.3 nm⁻¹
- optical laser: λ =800 nm, Q=0.008 nm⁻¹
- plasma oscillations: λ_p ~30 nm, Q~0.2 nm⁻¹

$$I(Q) \sim |f_0 + f' + if''|^2 S_{ii}(Q) + Z_f S_{ee}(Q)$$

Mitglied der Helmholtz-Gemeinschaft

Page 14 LA3NET TW3, Dresden, 28.04.2014

Outline

<u>Motivation:</u>

Understanding ultra-intense laser-matter interactions at solid density with coherent x-rays from XFELs

Examples:

- Physics at laser-matter-interface and in buried-layers
 [L. Huang et al., Phys. Plasmas 20, 093109 (2013)]
- 2. Ultrafast electron dynamics at solid-density [T. Kluge, C. Gutt, L. Huang et al., Phys. Plasmas 21, 033110 (2014)]
- 3. Ionization dynamics probed by resonant CXDI [...work in progress...]

Example 1: Physics in buried layer targets

Processes:

Example 1: Physics in buried layer targets Small Angle X-ray Scattering (SAXS)

- spatial frequencies \rightarrow mode structure of instabilities
- time history \rightarrow growth rates, γ vs κ

Page 17 LA3NET TW3, Dresden, 28.04.2014

T.E. Cowan | Helmholtz International Beamline for Extreme Fields (HIBEF) at European XFEL | www.hzdr.de/hgfbeamline

Mitglied der Helmholtz-Gemeinschaft

SINT

Outline

Motivation:

Understanding ultra-intense laser-matter interactions at solid density with coherent x-rays from XFELs

Examples:

- 1. Physics at laser-matter-interface and in buried-layers [L. Huang et al., Phys. Plasmas 20, 093109 (2013)]
- 2. Ultrafast electron dynamics at solid-density [T. Kluge, C. Gutt, L. Huang et al., Phys. Plasmas **21**, 033110 (2013)]
- 3. Ionization dynamics probed by resonant CXDI [...work in progress...]

Mitglied der Helmholtz-Gemeinschaft

Page 18 LA3NET TW3, Dresden, 28.04.2014

T.E. Cowan | Helmholtz International Beamline for Extreme Fields (HIBEF) at European XFEL

Example 2. Ultrafast electron dynamics at solid-density

Integration over XFEL pulse:

- Speckle blurring \rightarrow loss of absolute position information
- But, retain full mode information $\rightarrow S_{ee}(q)$, growth rate γ vs κ

Simulation (T. Kluge): 10^{20} W/cm² , 30 fs plane wave on 2.5 μm Ti

T.E. Cowan | Helmholtz International Beamline for Extreme Fields (HIBEF) at European XFEL | www.hzdr.de/hgfbeamline

Example 2. Ultrafast electron dynamics at solid-density

Simulation (T. Kluge): 10^{20} W/cm², 30 fs plane wave on 2.5 μ m Ti

Page 21 LA3NET TW3, Dresden, 28.04.2014

T.E. Cowan | Helmholtz International Beamline for Extreme Fields (HIBEF) at European XFEL | www.hzdr.de/hgfbeamline

DESY

SION

DRESDEN

concept

Example 2. High sensitivity to type of instability

preplasma 0.1 λ , Z/A=1/6

Mitglied der Helmholtz-Gemeinschaft

T.Kluge, C. Gutt, L. Huang et al, arXiv:1306.0420

Page 22 LA3NET TW3, Dresden, 28.04.2014

Outline

Motivation:

Understanding ultra-intense laser-matter interactions at solid density with coherent x-rays from XFELs

Examples:

- 1. Physics at laser-matter-interface and in buried-layers [L. Huang et al., Phys. Plasmas 20, 093109 (2013)]
- 2. Ultrafast electron dynamics at solid-density [T. Kluge, C. Gutt, L. Huang et al., Phys. Plasmas 21, 033110 (2014)]
- 3. Ionization dynamics probed by resonant CXDI [...work in progress...]

Mitglied der Helmholtz-Gemeinschaft

Page 23 LA3NET TW3, Dresden, 28.04.2014

Free electron density related to ionization state, Z* (prior to ion motion)

Jisolate a specific
 charge-state by tuning to
 bound-bound resonance
 (e.g., Kα or Kβ)

Mitglied der Helmholtz-Gemeinschaft

Simulation (L. Huang): 10^{20} W/cm², 50 fs \rightarrow on 2.5 μ m Cu

Page 24 LA3NET TW3, Dresden, 28.04.2014

Page 25 LA3NET TW3, Dresden, 28.04.2014

T.E. Cowan | Helmholtz International Beamline for Extreme Fields (HIBEF) at European XFEL | www.hzdr.de/hgfbeamline

Mitglied der Helmholtz-Gemeinschaft

Page 26 LA3NET TW3, Dresden, 28.04.2014

 $I(\mathbf{q}) \sim |f_0(\mathbf{q}) + f' + if''|^2 S_{ii}(\mathbf{q}) + Z_f S_{ee}(\mathbf{q})$

for K-alpha resonance at Cu^{20+} , f" ~ 60 – 100 e/atom

with resonant @ Cu 20+

without resonant

XFEL: 8 keV, 10^{10} ph, 8.2x8.2 μ m². Detector: 20 μ m pixels @ 1 m. Target: 1.6 μ m thick, 6.4 μ m deep (0.64 μ m Cu). Solid density.

Mitglied der Helmholtz-Gemeinschaft

Page 27 LA3NET TW3, Dresden, 28.04.2014

HIBEF: Bringing New Communities to XFEL

- XFEL probing inside *dense plasma* or *dynamically compressed matter* (with time-resolved, brilliant, and fully coherent x-rays) will:
- → <u>revolutionize</u> our understanding of *laser-interactions* with matter, matter at *high pressure*, matter in *strong fields*, …
- → <u>advance</u> high energy density research at other facilities...
- → <u>benefit</u> high-power laser research worldwide, in many fundamental & applied areas...
 - Compact accelerators
 - Table-top light sources
 - Radiation research in Oncology
 - Fusion energy research

- Material dynamics & Ageing
- Ultrafast (fs-, as-) physics
- Geo- & planetary science
- Laboratory Astrophysics

HIBEF: Relativistic laser-matter interactions

Thank you for your attention...

Mitglied der Helmholtz-Gemeinschaft

Page 29 <u>LA3NET</u>TW3, Dresden, 28.04.2014