
EGEE User Forum

Contribution ID: 87 Type: Oral contribution

The gLite Workload Management System
Thursday 2 March 2006 14:30 (30 minutes)

TheWorkload Management System (WMS) is a collection of components
providing a service responsible for the distribution and management of
tasks across resources available on a Grid, in such a way that
applications are conveniently, efficiently and effectively executed.

The main purpose of the WMS as a whole is then to accept a request of
execution of a job from a client, find appropriate resources to
satisfy it and follow it until completion, possibly rescheduling it,
totally or in part, if an infrastructure failure occurs. A job is
always associated to the credentials of the user who submitted it. All
the operations performed by the WMS in order to complete the job are
done on behalf of the owning user. A mechanism exists to renew
credentials automatically and safely for long-running jobs.

The different aspects of job management are accomplished by different
WMS components, usually implemented as different processes
communicating via data structures persistently stored on disk to avoid
as much as possible data losses in case of failure.

Recent releases of the WMS come with a Web Service interface that has
replaced the custom interface previously adopted. Moving to formal or
de-facto standards will continue in the future.

In order to track a job during its lifetime, relevant events (such as
submission, resource matching, running, completion) are gathered from
various WMS components as well as from Grid resources (typically
Computing Elements), which are properly instrumented. Events are kept
persistently by the Logging and Bookkeeping Service (LB) and indexed
by a unique, URL-like job identifier. The LB offers also a query
interface both for the logged raw events and for higher-level task
state. Multiple LBs may exist, but a job is statically assigned to one
of them. Being the LB designed, implemented and deployed so that the
service is highly reliable and available, the WMS heavily relies on it
as the authoritative source for job information.

The types of job currently supported by the WMS are diverse:
batch-like, simple workflow in the form of Directed Acyclic Graphs
(DAGs), collection, parametric, interactive, MPI, partitionable,
checkpointable. The characteristics of a job are expressed using a
flexible language called Job Description Language (JDL). The JDL also
allows the specification of constraints and preferences on the
resources that can be used to execute the job. Moreover some
attributes exist that are useful for the management of the job itself,
for example how much to insist with a job in case of repeated failures
or lack of resources.



Of the above job types, the parametric jobs, the collections, and the
workflows have recently received special attention.

A parametric job allows the submission of a large number of almost
identical jobs simply specifying a parameterized description and the
list of values for the parameter.

A collection allows the submission of a number of jobs as a single
entity. An interesting feature in this case is the possibility to
specify a shared input sandbox. The input sandbox is a group of files
that the user wishes to be available on the computer where the job
runs. Sharing a sandbox allows some significant optimization in
network traffic and, for example, can greatly reduce the submission
time.

Support for workflows in the gLite WMS is currently limited to
Directed Acyclic Graphs (DAGs), consisting of a set of jobs and a set
of dependencies between them. Dependencies represent time
constraints: a child cannot start before all parents have successfully
completed. In general jobs are independently scheduled and the choice
of the computing resource where to execute a job is done as late as
possible. A recently added feature allows to collocate the jobs on the
same resource. Future improvements will mainly concern error handling
and integration with data management.

Parametric jobs, collections and workflows have their own job
identifier, so that all the jobs belonging to them can be controlled
either independently or as a single entity.

Future developments of the WMS will follow three main lines: stronger
integration with other services, software cleanup, and scalability.

The WMS already interacts with many external services, such as Logging
and Bookkeeping, Computing Elements, Storage Elements, Service
Discovery, Information System, Replica Catalog, Virtual Organization
Membership Service (VOMS). Integration with a policy engine (G-PBox)
and an accounting system (DGAS) is progressing; this will ease the
enforcement of local and global policies regulating the execution of
tasks over the Grid, giving fine control on how the available
resources can be used. Designing and implementing a WMS that relies on
external services for the above functionality is certainly more
difficult than providing a monolithic system, but in fact doing so
favors a generic solution that is not application specific and can be
deployed in a variety of environments.

The cleanup will affect not only the existing code base, but will also
aim at improving the software usability and at simplifying service
deployment and management. This effort will require the evaluation and
possibly the re-organization of the current components, yet keeping
the interface.

Last but not least, considerable effort needs to be spent on the
scalability of the service. The functionality currently offered
already allows many kinds of applications to port their computing
model onto the Grid. But additionally some of those applications have
demanding requirements on the amount of resources, such as computing,
storage, network, and data, they need to access in order to accomplish
their goal. The WMS is already designed and implemented to operate in
an environment with multiple running instances not communicating with
each other and seeing the same resources. This certainly helps in case
the available WMSs get overloaded: it is almost as simple as starting
another instance. Unfortunately this approach cannot be extended much
further because it would cause too much contention on the available
resources. Hence the short term objective is to make a single WMS
instance able to manage 100000 jobs per day. In the longer term it
will be possible to deploy a cluster of instances sharing the same
state.



Primary author: GIACOMINI, Francesco (Istituto Nazionale di Fisica Nucleare (INFN))

Presenter: GIACOMINI, Francesco (Istituto Nazionale di Fisica Nucleare (INFN))

Session Classification: 2a: Workload management and Workflows

Track Classification: Workload management and Workflows


