
Achieving real time response in grid
applications.

Stefano Cozzini,
Riccardo Di Meo

The grid
● The actual implementation is queue and not real

time oriented: this is definitely an issue for
many dynamic applications.

● Our main goal is to attain real time response
from grid enabled applications.

Obstacles that should be overcome.
● The queue approach is completely

inadequate for real-time tasks: we
don't know when our program will be
executed.

● Input files need to be downloaded
from the SE: this takes time.

● All steps, from submission to results
retrieval, add a significant delay,
which is unavoidable as long as
standard tools are used.

● The execution is not interactive: after
sending the job to the RB, there's no
way to alter it.

– The program should be ready to
immediately accept requests.

– The total time needed to submit a request
and obtain an answer should be as small

as possible.

– A single job should be able to process
many requests.

● The queue approach is completely
inadequate for real-time tasks: we
don't know when our program will be
executed.

● Input files need to be downloaded
from the SE: this takes time.

● All steps, from submission to results
retrieval, add a significant delay,
which is unavoidable as long as
standard tools are used.

● The execution is not interactive: after
sending the job to the RB, there's no
way to alter it.

...and solutions.
– We book resources in advance in order to

have enough at a given time (“Job
reservation”).

– We bypass the information system,
obtaining status and results directly from
the WN.

– We establish a direct connection between
WN and UI, thus letting them interact.

– The WN downloads the data while
– waiting.

Job reservation
● We submit many requests in advance in order to have resources ready

when needed: once each job is running, it waits until the user has some

data to process.

● No outside host can establish a connection to the WN since they are on

private networks:

– we need a reversed approach: the WN itself polls periodically an external host
(which must be resolvable).

– we need outbound connectivity for the WNs (which is sometimes blocked for
security reasons), EGEE is working on a facility that opens ports on demand.

– although this approach works, it is more complicated to code than the (more
intuitive) one where the UI is the client that contacts the WN on the grid.

Some problems
(and suggestions to overcome them...)

● Doesn't scale very well and is only statistically accurate
(you cannot be absolutely sure that the resources will be
there).

– There's no simple solution to this problem: the limit lies in
the actual implementation and can be partially bypassed
through a more responsive queue, although this problem is
intrinsic in every shared system where N+1 users compete
for N resources...

– A statistical analysis can be done to maximize the chance of
having free resources.

More problems
(and suggestions as well...)

● Advanced booking wastes resources and could be too expensive.

– the “Wall Time” and not the “CPU Time” is what is usually accounted.

● This issue can be easily resolved by running 2 programs per job:

– the job reserving one, that will simply contact the UI to check if there
are jobs/transactions to do.

– a time consuming one (in the background with a low priority), which
effectively uses all the CPU time wasted by the first one, which should:

● checkpoint often and efficiently.
● be embarrassingly parallel.

Special care must be taken in multi
processor/core systems to avoid stealing

resources from other users!!!

#!/bin/sh

chmod u+x ./filler_app
nice -n 10 filler_app &

chmod polling_app
./polling_app
myhost.mynet.edu

Executable = the_script_on_the left;
InputSandbox =
{“filler_app”,”polling_app”,

the_script_on_the_left};
OutputSandbox =
{“filler_app_results.dat”};

Poll the UI for tasks: will
take over when needed.

Executed at low priority for
avoiding interference with the real
time application. Uses the
otherwise wasted CPU time.

To effectively apply this approach the filler
application should be able to quickly and
efficiently checkpoint.

Real time response.
● Now that we have our resources available when we

really need them, some problems still remain:

– Every interaction with the grid brings a delay which
cannot be tolerated for real time (or near real time)
applications.

● This overhead increases with the load of the RB.
● The RB cannot be replicated in a transparent way.
● The delay is significant no matter the load.

The standard workflow cannot be applied.

How?
● The most straightforward way is to directly communicate with

our job on the WNs.

● With this paradigm we don't need anymore:

– a status command
● The establishment of a connection is the signal that the app. is

runing, after that, every information is received directly.

– a get-output command
● Files can be sent to the user without passing through the RB, with

the added benefit that the load on it decreases.

– a cancel command and different jobs for every single task

● The application can run on the WN and satisfy multiple
requests until we explicitly tell it to quit.

● An “interactive” JobType exists, which creates a pipe between
WN and UI, although in this way:

– the WNs can connect to the UI only.

– a lot of overhead: allocates many resources and scales badly.

– every job allocates a different port and creates 2 special files: the
listening application has to be aware of the details of the
submission (at least the id list of jobs) to parse the correct ones!!

– conflicts with the job reservation.

– we have no control over the type/number of streams.

– we'll have to use sockets anyway (see later) so... why bother?

● the “interactive” job, though easy to use and fine for single
submissions (which is its original purpose) is not well suited
for our needs: plain sockets is the answer.

This model is very suitable for a portal-like application were different
types of real-time apps. get submitted through a custom interface on the UI.

But life is tough, and sometimes....
● the computing power of single WN is not sufficient.
● the tasks are not independent.

Parallelization is needed.
● MPI cannot be used since it conflicts with Job

Reservation:

– during J.R. you ask for many WN to get only some of
them asynchronously.

– with MPI every WN should be present at once: it's an
“all or nothing” approach.

We need intra cluster
communication.

● In the previous scenario the link between WNs
can be provided by the master: input data
travels through a public network: this approach
is slow: WNs should rely on the fast cluster net!

● Aren't we forgetting something?
– WNs coming from independent jobs are not aware

of each other (they don't know the other's IP).

– no MPI implies sockets again.

GridHostUtil
● We developed a small utility (gridhostutil) that:

– has a client/server option:
● the server listens on the UI (or other resolved host) for

incoming connections.
● the client is run on the WNs and connect to the server.
● After enough connections are received or a timeout

elapses, the server contacts the clients and sends them
their complete and ordered list.

– allow WNs inside a single CE to communicate.

A possible implementation
● After some jobs are launched on the grid, a

server is executed on a resolved host.
●The middleware is needed only
during this step.
●The jobs are submitted in
advance and are ready when
users need them.
●While waiting, the WNs work
on a time consuming job.
●GridHostUtil is launched on
them as a client.

A possible implementation
● The Hostnames exchange begins.

●The GridHostUtil client tries
repeatedly to contact a resolved
host.
●The host that has to be called is
known in advance.
●Up to this point, the WNs are
completely separated.

A possible implementation
● The resolved host becomes aware of the

number of available hosts on the grid.
●The GridHostUtil server waits
until enough WNs have
contacted it.
●A timeout can be specified.
●Once one of those conditions is
satisfied, it sends a complete and
ordered list of hostnames to all
Wns.
●Lists are slightly different for
each WN..

A possible implementation
● The WNs are now aware of each other and can

communicate freely. ●A server on an external host can
execute applications remotely in
real time, thus acting as a “queue
 under the middleware's queue”.
●Though not implemented,
nothing prevents recruiting other
WNs: at this point (by repeating
the previous steps), if the
application is able to handle
them.

Future directions
● We already explored inter-CE communication between

WNs with the help of a bridging host and it works for
small amounts of data.

● We are heading for the development of an MPI like
library to simplify the porting of real time applications
on the grid without having to work directly with
sockets.

● The opportunities offered by XML-RPC and ssh
tunneling might be worth exploring.

Conclusions
● Real time response from the grid is achievable,

although some effort is required to port the
application (unless it's using sockets already, in
which case the porting is straightforward).
– Job reservation can be used to get a ready WN

when needed.

– The reversed connection approach provides the
interactivity and prompt answer from the grid.

Thank you!

Questions?

