KUG Introduction, overview of WP8 work and possible contributions to WP11

EuCARD2 KickOff Meeting 09.12.2013 Daniel Deboy (PhD Student) on behalf of KUG

CERN Project

EUCARD

kunst

UNI

QraZ

Introduction

Institute of Electronic Music and Acoustics

* founded 1965

- Interface between Arts and Science
 - R&D supports Arts

Introduction

raz

New technologies create new musical performances

Artistic Research	Signal Processing and Acoustics	Computer Music
Sound and Space	Spatial Audio	Sonification
Embodiment	Audio Signal Processing	Interaction Design
Algorithmic Composition	Psychoacoustics	

EUCARD

CERN

Remote estimate of collimator material damage after unintended high-intensity beam impacts

Mis-Steering Halo Collimator Jaws

- Worst case scenarios of mis-steered beam:
 - Example: **Asynchronous beam dump** (I nominal LHC bunch)
 - Energy of up to 100 kJ deposited in jaw material
 - Sudden impact
 - Damage of collimator jaw

Overview on WP8 work

Ionizing Radiation

- **Impact** of particles deposits energy on collimator jaw
 - Sudden **heat-up** of jaw creates pressure wave
 - Vibrations are transferred to the whole collimator structure
 - **Sound** is created in the LHC tunnel and recorded with microphones
 - Signal Analysis yields estimate of impact location (which collimator?) and damage level (intervention necessary?)

Layers of sound recorded with microphones in tunnel

LHC Collimation

CERN

EUCARD

Overview on WP8 work

- Raw signals during the impact show large spikes from radiation effects in the sensor electronics (R2E).
- Refraction from spike is super-imposed to real sound data.

- A high-pass filter with a cutoff frequency of 100 Hz is applied to remove the slow refraction.
- Time delay between R2E spike and arrival of sound determines distance.

CERN

EUCARD

Overview on WP8 work

- RMS averaging with a time constant of 125 ms is used to determine sound pressure level Lp.
- The R2E spike is cut out before calculation of L_{p.}

CERN

EUCARD

kunst Ini araz

Conclusion on HRM Tests

- Sound recorded in surrounding experimental area can be correlated to deposited beam energy.
- **Remote estimate** of damage level possible under "lab" conditions (experimental setup and beam parameters well known, reference measurement available)
- Location of impact can be determined roughly, therefore several collimators can be monitored using only one microphone.
- Excitation signal is convolved by collimator structure and room impulse response.
- Sound pressure levels of > 100 dB SPL peak measured in far field

Main issues

- Strong background noise (mainly induced in long asymmetrical analog signal cables)
- R2E noise spike during beam impact

EUCARE

Possible Contributions to WPII

Adaptation of a new optical microphone sensor and testing of a prototype during HiRadMat 2 run (in cooperation with XARION, Vienna)

Courtesy: Balthasar Fischer (XARION)

Developed at Vienna University of Technology (MEOS)

Sensor Head:

Rigid Fabry-Pérot etalon in aluminum housing; Si02 glass, dielectric coatings (5µm thick; TiO2. MgO), aluminum, steel, glue.

The lab-proven 780nm setup of MEOS is redesigned for a fiber-based 1550nm version.

Expected features (best effort): All-optical, electronics separated with optical fiber Noise: 60 dB (rel 20µPa) **Dynamic range: 100dB Distortion limit** (THD 5%): **I60 dB** (rel 20µPa) Frequency response: 100Hz-50kHz

CERN

Possible Contributions to WPII

Foreseen improvement with all-optical solution:

- Higher gain factor in amplifier yields **lower** (electronically induced) **background noise**
- No radiation issues during high-intensity impacts
- Can be installed **closer to target** to reduce room reflection components

Other contributions

- Further simulation and measurement of structure borne sound from material impacts
- Multi material tests Relate sound pressure level to material models and predicted/measured shockwaves (in cooperation with other EuCARD partners)

▶ ???

KUG EuCARD Contacts

Robert Höldrich - robert.hoeldrich@kug.ac.at

Daniel Deboy - <u>daniel.deboy@cern.ch</u>

Thanks for your attention!

LHC Collimation

CERN

