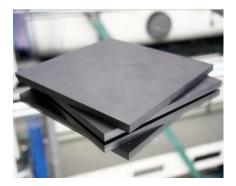


EUCARD/EUCARDII highly conductive material contributions

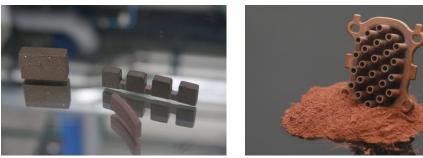
RHP-Technology GmbH A-2444 Seibersdorf, Austria

RHP-Technology GmbH Forschungszentrum, CA, A-2444 Seibersdorf, Austria

Advanced Materials for Thermal Management

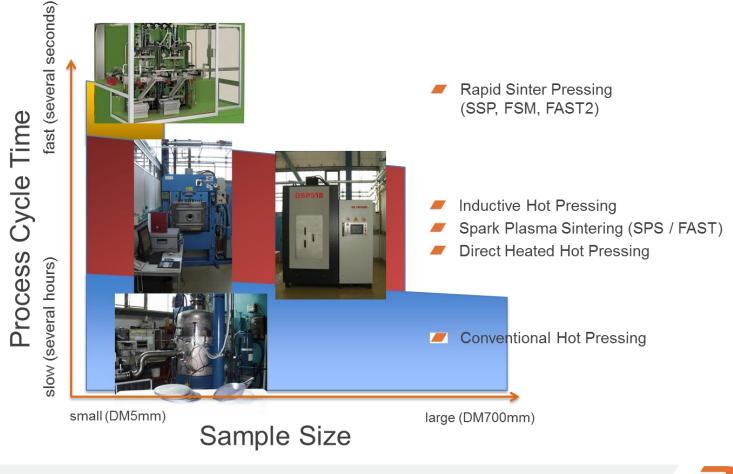


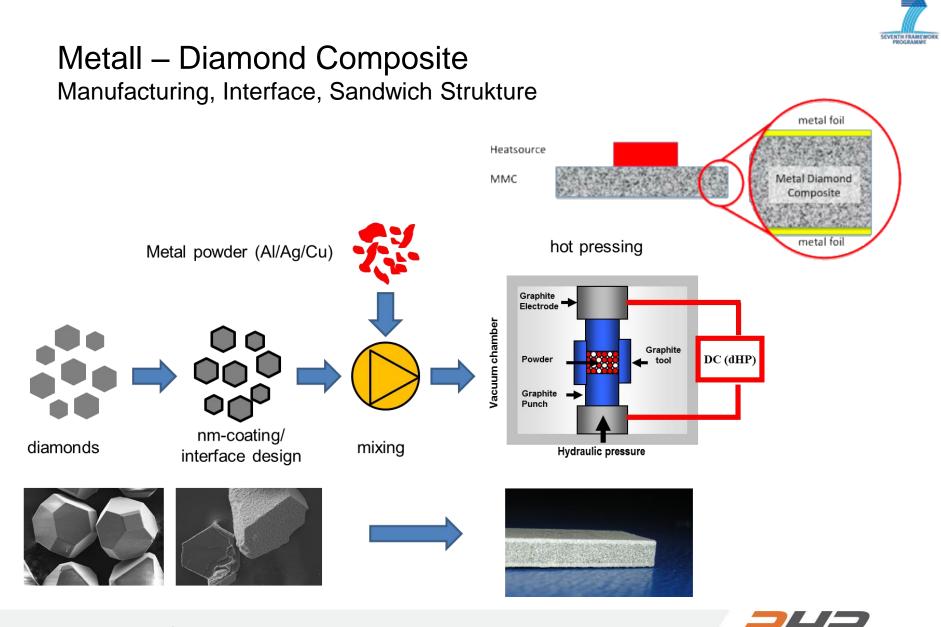
EUCARD²


EUCARD

Development and Manufacturing of Sputtering Targets with customized composition targets

Research Solutions in powder technology, hot pressing, sintering Powder Injection Moulding





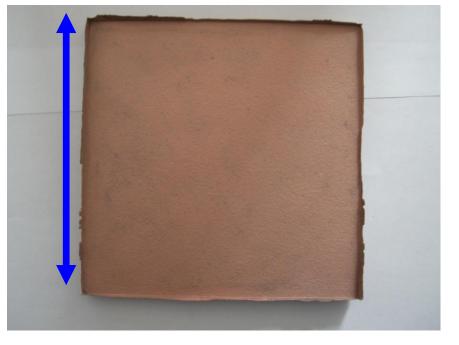
Hot Pressing Technologies at RHP from hours to seconds

page 4

MATIERIAL ENGINEERING BY POWDER TECHNOLOGY

EUCARD

EUCARD²


TECHNOLOGY

CuCD by Conventional and Direct Hot Pressing

- Manufacturing of Cu-diamond plates with 60 vol.%
- Water jet cutting of samples for:
 - Thermal Diffusivity
 - CTE
 - Mechanical Testing
 - Measurement of mechanical properties at high temperature
- Measurement of RT thermal diffusivity of 40 samples: 218 +/- 18 mm²/s
- Measurement of CTE on 5 samples: CTE ~6 ppm/K at 100° C.

150 mm x 150 mm

Internship of N. Mariani @ RHP

Manufacturing and Characterization of Samples

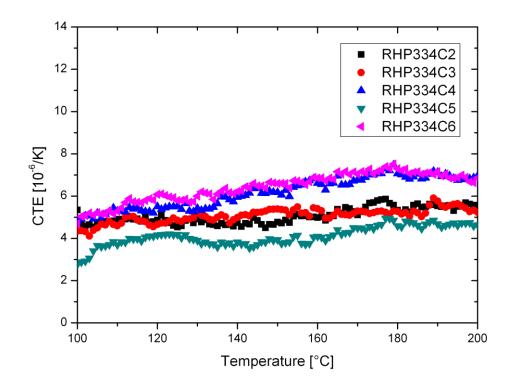
Different sample geometries were cut out of the plates by water jet cutting.

C1 (C2 (C3 (C4 (C5 (C6 (C7) M7	04
$\widetilde{\mathbb{N}} \cap \overline{\mathbb{O}} \cap \overline{\mathbb{O}}$		
$(5) \cap (0) \cap (0)$		
ðŏ ŏŏ (
9000		
(0)		:0 ++- P9
M7	M16	
M8	M17	
M9	M18	to
M10	M19	
M11	M20	
M12	M21	
M13	M22	
M14	M23	
M15	M24	P22

16mm x 4mm (22 Stück) DM 8mm (42 Stück) 5.5mm x 60mm (24 Stück)

page 6

EUCARD



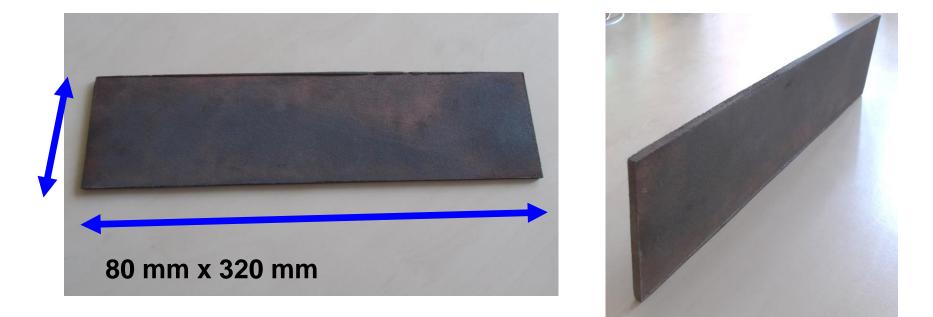
EUCARD²

Measurement of Thermal Expansion Coefficient

- Thermal diffusivity measurements
- Selection of suitable material composition together with CERN for irradiation experiments + testing of properties

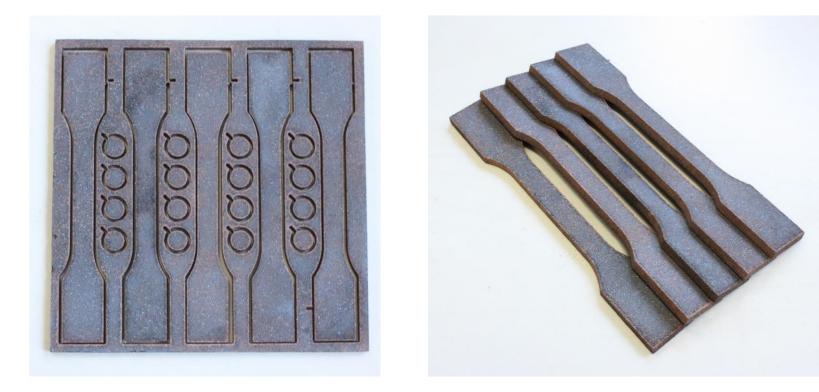
page 7

Samples for HIRADMAT experiment CuCD material manufactured by direct hot pressing


page 8

Demonstrator for middle segment of collimator jaw CuCD material manufactured by direct hot pressing

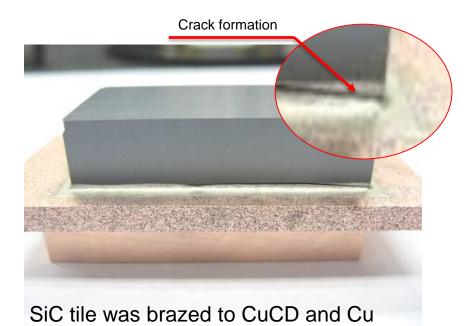
page 9

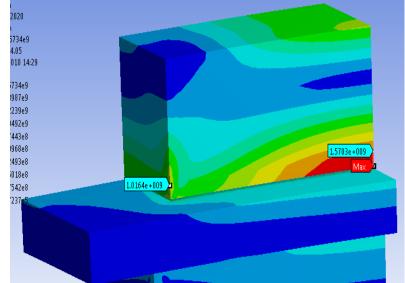


CuCD Samples for Politecnico di Torino

Manufacturing of Cu-diamond Samples for Tensile testingShape was cut out of the plate by water jet cutting.

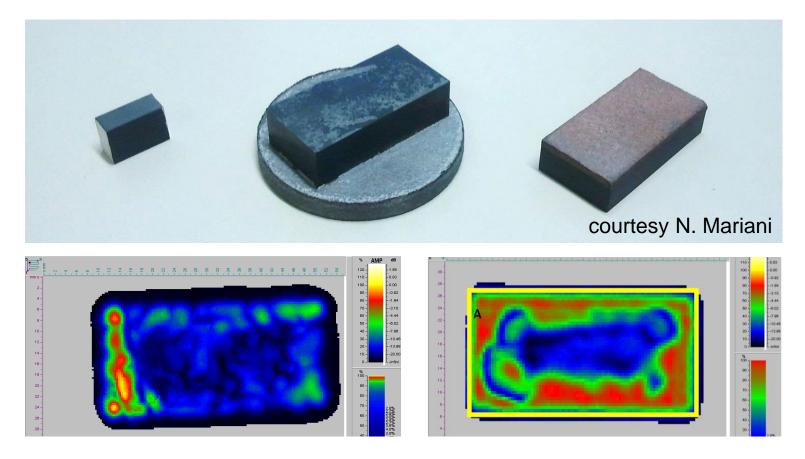
page 10





Brazing of SiC tiles to the collimator jaw material (CERN)

- Cracking of the SiC occurred after brazing process
- Idea to manipulate electrical resistivity of SiC


courtesy N. Mariani

- Process development: Direct bonding of SiC tiles to Cu/Diamond using the hot press.
- SiC-C material supply for higher electrical conductivity

Supplier and Type of SiC	Boostec	ESK Ekasic T	Keramo	Microcertec Medium Resistivity	RHP Technology SiC-C
Electrical Resistivity (Ω.cm)	3629	1081	40741	4687	2980
Standard Deviation	529	32	8260	372	337

Comparison between various SiC Types and SiC-C from RHP.

To overcome the limitation due to the insulator like electrical behaviour of Microcertec SiC (Electrical Resistivity ~4700 Ω .cm), RHP Technology produced a new kind of Silicon Carbide having more C than Si (name SiC-C): the addition of the free electrons of the added C atoms should enhance the electrical conductivity of the ceramic reducing its electrical resistivity.

courtesy R. Blanchon, W. Vollenberg, N. Mariani

Samples for Irradiation Studies at BNL

- Repeating of irradiation experiments at Brookhaven National Laboratory, testing for radiation hardness
- New Samles for BNL – Copper Diamond
- Water jet cutting with conical correction and manual grinding for a tight fit

courtesy N. Mariani

Samples were delivered to:	Ref. No.	DM 8mm	16x4 mm ²	5,5x60mm ²
CERN (to Nicola Mariani)	RHP334	C-17 to C-42	-	-
KI (via CERN/Mariani)	RHP334 RHP412	16 pcs (8mm) 10 pcs (10mm)	P-1 to P-22	M-9 to M-24
GSI (via CERN/Mariani)	RHP334	8 pcs	-	-
RHP	RHP334 HP 1832	C-1 to C-16 C-1 to C42	P-1 to P-22	M-1 to M-8 M-1 to M-24

Samples were delivered to:	Ref. No.			
TURINO (via CERN/Mariani)	RHP 412	5 pcs for tensile testing	-	-
CERN (to Mariani)	HP1902	SiC bonded on Cu/Diamond	SiC-C samples	-

Samples were delivered to:	Ref. No.			
HIRADMAT		Cylinders and Half Cylinders	-	-
BNL		For iradiation experiments	-	-

RHP-Technology & EUCARDII possible contributions to WP11

- Presentation of advanced ceramics produced at RHP Technology (WC, MoC, SiC, TiC, etc) with specific focus on highly conductive materials
- Proposals for new heavy and conductive refractory materials (e.g. WC- or Mo2C- based) as an alternative to present tungsten heavy alloys
- Proposals for other SiC- based materials and their bonding to metallic substrates
- Type and number of material samples to be produced.

Further details to be presented and discussed tomorrow.

confidential