Gibbs paradox and the QCD phase transition

A. Jakovác

ELTE, Dept. of Atomic Physics

13. Zimányi WINTER SCHOOL ON HEAVY ION PHYSICS, Dec. 2. - Dec. 6., Budapest, Hungary 1/27

 $2Q$

Contents

- 1 [The QCD equation of state](#page-2-0)
- 2 [Phases of QCD](#page-9-0)
- 3 [Gibbs paradox](#page-17-0)
- 4 [Mathematical treatment of a generic spectrum](#page-20-0)
- 5 [QCD thermodynamics](#page-27-0)

6 [Conclusions](#page-37-0)

13. Zimányi WINTER SCHOOL ON HEAVY ION PHYSICS, Dec. 2. - Dec. 6., Budapest, Hungary 2 / 27

 \mathcal{A} \mathcal{A} is a set \mathcal{B} is a set \mathcal{B} is a set \mathcal{B}

 OQ

Outlines

1 [The QCD equation of state](#page-2-0)

- 2 [Phases of QCD](#page-9-0)
- 3 [Gibbs paradox](#page-17-0)
- [Mathematical treatment of a generic spectrum](#page-20-0)
- 5 [QCD thermodynamics](#page-27-0)

6 [Conclusions](#page-37-0)

13. Zimányi WINTER SCHOOL ON HEAVY ION PHYSICS, Dec. 2. - Dec. 6., Budapest, Hungary 3/27

イロト イ押ト イラト イラトー

 $2Q$

QCD pressure from MC simulations:

Sz. Borsanyi, G. Endrodi, Z. Fodor, A.J., S. D. Katz, S. Krieg, C. Ratti, K.K. Szabo, JHEP 1011 (2010) 077

13. Zimányi WINTER SCHOOL ON HEAVY ION PHYSICS, Dec. 2. - Dec. 6., Budapest, Hungar

QCD pressure from MC simulations:

Sz. Borsanyi, G. Endrodi, Z. Fodor, A.J., S. D. Katz, S. Krieg, C. Ratti, K.K. Szabo, JHEP 1011 (2010) 077 How do we interpret the results?

13. Zimányi WINTER SCHOOL ON HEAVY ION PHYSICS, Dec. 2. - Dec. 6., Budapest, Hungar

hadron-QGP phase transition

- low temperature: : hadrons
- high temperature: : QGP
- (would-be) critical temperature $T_c = 156 \,\text{MeV}$.
- in reality: crossover everything changes continuously still sharp change in the excitations??

13. Zimányi WINTER SCHOOL ON HEAVY ION PHYSICS, Dec. 2. - Dec. 6., Budapest, Hungary 5 / 27

- o high temperature: : QGP
- (would-be) critical temperature $T_c = 156 \,\text{MeV}$.
- \bullet in reality: crossover everything changes continuously still sharp change in the excitations??

13. Zimányi WINTER SCHOOL ON HEAVY ION PHYSICS, Dec. 2. - Dec. 6., Budapest, Hungary 5 / 27

in this talk: Proposal: continuous changes

13. Zimányi WINTER SCHOOL ON HEAVY ION PHYSICS, Dec. 2. - Dec. 6., Budapest, Hungary 6/27

 $Q \cap C$

in this talk: Proposal: continuous changes

- hadrons determine thermodynamics up to τ \lesssim τ_c
- quarks determine thermodynamics for $T \gtrsim 3 T_c \approx 450 \, \mathrm{MeV}$
- hadrons survive T_c , quarks appear continuously
- new phase of matter appears at T_c , but not QGP

13. Zimányi WINTER SCHOOL ON HEAVY ION PHYSICS, Dec. 2. - Dec. 6., Budapest, Hungary 6/27

Outlines

1 [The QCD equation of state](#page-2-0)

- 2 [Phases of QCD](#page-9-0)
- 3 [Gibbs paradox](#page-17-0)
- [Mathematical treatment of a generic spectrum](#page-20-0)
- 5 [QCD thermodynamics](#page-27-0)

6 [Conclusions](#page-37-0)

13. Zimányi WINTER SCHOOL ON HEAVY ION PHYSICS, Dec. 2. - Dec. 6., Budapest, Hungary 7 / 27

イロト イ押ト イラト イラトー

÷.

 $2Q$

Description of QCD thermodynamics: low temperature

HRG (hadron resonance gas): $P = \frac{T}{2\pi^2} \sum_{n=1}^{N}$ $n=1$ ∓ R∞ 0 dp p^2 ln $(1 \mp e^{-E(p,m_n)/T})$

• free hadrons, \pm for bosons/fermions

• masses from experiments (PDG)

• valid to $T < 150 - 180$ MeV

(Sz. Borsanyi, G. Endrodi, Z. Fodor, A.J., S. D. Katz) (S. Krieg, C. Ratti, K.K. Szabo, JHEP 1011 (2010) 077)

13. Zimányi WINTER SCHOOL ON HEAVY ION PHYSICS, Dec. 2. - Dec. 6., Budapest, Hungary 8 / 27

Description of QCD thermodynamics: high temperature

GQP (quark-gluon plasma)

- QCD degrees of freedom
- **•** resummation needed DR, HTL – 3-loop
- \bullet IR safe quantities like P and S
- valid for
	- $T \lesssim 250-300\,{\rm MeV}$

(N. Haque et.al. [e-Print: arXiv:1309.3968])

13. Zimányi WINTER SCHOOL ON HEAVY ION PHYSICS, Dec. 2. - Dec. 6., Budapest, Hungary 9/27

Phase transition regime: observations

$T \in [150, 250 - 300]$ MeV

- crossover (contiuous) phase transition
- hadrons do not disappear at T_c

(J. Liao, E.V. Shuryak PRD73 (2006) 014509 [hep-ph/0510110]) MC: hadronic states are observable even at $T \sim 1.5 T_c$

(AJ., P. Petreczky, K. Petrov, A. Velytsky, PRD75 (2007) 014506)

• MC: non-quasiparticle-like correlations $T \in [150, 250]$ MeV: free HRG, QGP description not possible

(P. Petreczky, J. Phys. Conf. Ser. 402, 012036 (2012) [arXiv:1204.4414 [hep-lat]]) (R. Bellwied, S. Borsanyi, Z. Fodor, S. D. Katz and C. Ratti, [arXiv:1305.6297 [hep-lat]])

13. Zimányi WINTER SCHOOL ON HEAVY ION PHYSICS, Dec. 2. - Dec. 6., Budapest, Hungary 10 / 27

イロメ イ母メ イラメ イラメ

Phase transition regime

Puzzles:

- HRG is not stable at large T (Hagedorn instability) What happens with the hadrons?
- What happens with the quarks at low T?

Possible explanation:

hadrons/quarks exist, but have large self-energies

 $m_h \stackrel{T \to \infty}{\longrightarrow} 0$, $m_{q,g} \stackrel{T \to 0}{\longrightarrow} \infty$

- leads to small thermal weights $\sim e^{-\beta m}\ll 1$
- BUT: MC data do not support this idea! direct mass, and correlation measurments

13. Zimányi WINTER SCHOOL ON HEAVY ION PHYSICS, Dec. 2. - Dec. 6., Budapest, Hungary 11 / 27

 $A \oplus B \rightarrow A \oplus B \rightarrow A \oplus B \rightarrow A$

Alternative picture

melting/dissociation of hadrons

o particle state disappears

• it would explain why we do not see quarks at low energy or hadrons at very high temperatures

Alternative picture

melting/dissociation of hadrons

o particle state disappears

• it would explain why we do not see quarks at low energy or hadrons at very high temperatures

Question

Is it possible to change the number of species without changing the ground state?

13. Zimányi WINTER SCHOOL ON HEAVY ION PHYSICS, Dec. 2. - Dec. 6., Budapest, Hungary 12 / 27

Alternative picture

melting/dissociation of hadrons

o particle state disappears

• it would explain why we do not see quarks at low energy or hadrons at very high temperatures

Question

Is it possible to change the number of species without changing the ground state?

Physical example: Gibbs paradox!

13. Zimányi WINTER SCHOOL ON HEAVY ION PHYSICS, Dec. 2. - Dec. 6., Budapest, Hungary 12/27

Outlines

- 1 [The QCD equation of state](#page-2-0)
- 2 [Phases of QCD](#page-9-0)
- 3 [Gibbs paradox](#page-17-0)
- [Mathematical treatment of a generic spectrum](#page-20-0)
- 5 [QCD thermodynamics](#page-27-0)
- 6 [Conclusions](#page-37-0)

13. Zimányi WINTER SCHOOL ON HEAVY ION PHYSICS, Dec. 2. - Dec. 6., Budapest, Hungary 13 / 27

イロメ イ押メ イラメ イラメ

 $2Q$

Gibbs paradox: changing number of particle species

(J.W.Gibbs, 1875-1878; E.T.Jaynes, 1996) take two (ideal) gases with $m, m + \Delta m$ masses: initially n_1 , V_1 n_2 , V_2 , p , T mix them: $V = V_1 + V_2$, $n = n_1 + n_2$ entropy difference (mixing entropy) $(f = n_1/n_2)$ $\Delta S = -nR(f \log f + (1 - f) \log(1 - f))$ $\Rightarrow -nR \log 2$, for $n_1 = n_2$, $V_1 = V_2$.

J.W.Gibbs (1839-1903)

- **o** describes change of number of particle species $2 \rightarrow 1$
- relies on (in)distinguishability of particles

(not on the change of ground state)

 290

13. Zimányi WINTER SCHOOL ON HEAVY ION PHYSICS, Dec. 2. - Dec. 6., Budapest, Hungary 14 / 27

Without interaction the energy levels (spectral lines) are infinitely thin lines. In interacting gases the spectral lines broaden.

- 1st plot: 2 lines 4th plot: one broad peak (?)
- Gibbs: particles are distinguishable, if a mixed gas can be separated by some means. Going from case 1 to 4 this is harder and harder!
- if $\Gamma \gtrsim \Delta m$ we cannot separate peaks

13. Zimányi WINTER SCHOOL ON HEAVY ION PHYSICS, Dec. 2. - Dec. 6., Budapest, Hungary 15/27

Outlines

- 1 [The QCD equation of state](#page-2-0)
- 2 [Phases of QCD](#page-9-0)
- 3 [Gibbs paradox](#page-17-0)
- 4 [Mathematical treatment of a generic spectrum](#page-20-0)
- 5 [QCD thermodynamics](#page-27-0)

6 [Conclusions](#page-37-0)

13. Zimányi WINTER SCHOOL ON HEAVY ION PHYSICS, Dec. 2. - Dec. 6., Budapest, Hungary 16 / 27

イロメ イ押メ イヨメ イヨメ

 $2Q$

Description of melting

Lesson of the Gibbs paradox

melting \equiv merging spectral lines

more generally: disappearance of a peak from the spectrum

- \Rightarrow We need to treat the complete spectrum!
- in Hamiltonian formalism exponential damping

 \Rightarrow $\hat{H} \rightarrow \hat{H} - i\gamma \Rightarrow$ loss of unitarity!

 \Rightarrow use Lagrangian formalism

• largest part of interactions is is used to change the spectrum (c.f. HRG: strongly interacting quarks \rightarrow weakly interacting bound states)

 \Rightarrow neglect interactions

spectrum from experiments or from self-consistent methods (SD-equations, 2PI)

 \Rightarrow we start from a given ρ spectral [fu](#page-20-0)[nc](#page-22-0)[ti](#page-20-0)[on](#page-21-0)

 $\mathcal{A} \equiv \mathcal{A}$.

^{13.} Zimányi WINTER SCHOOL ON HEAVY ION PHYSICS, Dec. 2. - Dec. 6., Budapest, Hungary 17 / 27

Lagrangian formalism for general spectral functions

for one bosonic (fermionic) component:

 $\mathcal{L} = \frac{1}{2} \Phi^*(p) \mathcal{K}(p) \Phi(p)$

- unique $\rho \to \mathcal{K}$ relation: $G_{ret}(\rho) = \int \frac{d\omega}{2\pi}$ $\varrho(\omega,{\bf p})$ $\frac{\varrho(\omega,\mathbf{p})}{p_0-\omega+i\varepsilon}, \quad \mathcal{K} = \text{Re } \mathcal{G}_{\text{ret}}^{-1}$
- defines a consistent field theory: unitary, causal, Lorentz-invariant, E , p conserving (AJ. Phys.Rev. D86 (2012) 085007 [arXiv:1206.0865])
- thermodynamics: $\varepsilon(T)=\langle\, T^{00}\rangle$, and use thermodynamical relations to obtain pressure.

Result

$$
\varrho \to G_{\text{ret}} \to \mathcal{K}, \text{ then}
$$

$$
\varepsilon = \int \frac{d^4 p}{(2\pi)^4} E(p) n(p_0) \varrho(p), \qquad E(p) = p_0 \frac{\partial \mathcal{K}}{\partial p_0} - \mathcal{K}
$$

13. Zimányi WINTER SCHOOL ON HEAVY ION PHYSICS, Dec. 2. - Dec. 6., Budapest, Hungary 18 / 27

13. Zimányi WINTER SCHOOL ON HEAVY ION PHYSICS, Dec. 2. - Dec. 6., Budapest, Hungary 19 / 27

 $Q \cap C$

Outlines

- 1 [The QCD equation of state](#page-2-0)
- 2 [Phases of QCD](#page-9-0)
- 3 [Gibbs paradox](#page-17-0)
- [Mathematical treatment of a generic spectrum](#page-20-0)
- 5 [QCD thermodynamics](#page-27-0)

6 [Conclusions](#page-37-0)

13. Zimányi WINTER SCHOOL ON HEAVY ION PHYSICS, Dec. 2. - Dec. 6., Budapest, Hungary 20 / 27

イロメ イ押メ イラメ イラメ

 $2Q$

Melting hadrons

• spectral function: most important effect is merging quasiparticle and scattering states

 \Rightarrow $\rho = \text{QP peak} + \text{continuum}$

 \bullet thermal variation height and/or width of the QP peak changes mass variation is not too important (especially for very massive hadrons)

Pressure of melting hadrons

rescaled plots for fixed QP height \Rightarrow correct height from sum rule.

pressure decreases!

- p/T^4 can be very small even for large QP peak heights
- **•** pressure curves are self-similar

13. Zimányi WINTER SCHOOL ON HEAVY ION PHYSICS, Dec. 2. - Dec. 6., Budapest, Hungary 22 / 27

 QQ

Effective thermodynamical DoF

$$
The remodeling of: N_{\text{eff}}(T) = \frac{p(T, \gamma)}{p(T, \gamma = 0)}
$$

• just slightly temperature dependent (orange band)

• fit: Gaussian
$$
e^{-\frac{\gamma^2}{2\gamma_0^2}}
$$

pressure of a melting quasiparticle

$$
p(T) = N_{\text{eff}}(T) p_{\text{ideal}}(T) = e^{-c\gamma^2(T)} p_{\text{ideal}}(T)
$$

13. Zimányi WINTER SCHOOL ON HEAVY ION PHYSICS, Dec. 2. - Dec. 6., Budapest, Hungary 23 / 27

QCD thermodynamics: statistical description

Describe HRG with melting hadrons

 \bullet HRG: huge $\#$ of hadronic contributions, each small!

 \Rightarrow statistical description is needed

• we need spectra... hard to obtain

 \Rightarrow idealized, simplified picture for hadron masses and widths.

(AJ. Phys.Rev. D88 (2013) 065012 [arXiv:1306.2660])

- masses: Hagedorn spectrum $\varrho_{\mathit{hadr}}(m) \sim (m^2 + m_0^2)^a e^{-m/T_H}$ several fits (eg. $a = 0$) possible
- width

 $\gamma^2(\mathcal{T}) = \gamma_0^2 + c \mathcal{T}^2$

consistent with model-calculations

(F. Riek and J. Knoll, NPA 740, 287 (2004)) (W. Broniowski et.al.PRD 70, 117503 (2004))

13. Zimányi WINTER SCHOOL ON HEAVY ION PHYSICS, Dec. 2. - Dec. 6., Budapest, Hungary 24 / 27

fit to MC data Sz. Borsanyi et.al., JHEP 1011 (2010) 077

13. Zimányi WINTER SCHOOL ON HEAVY ION PHYSICS, Dec. 2. - Dec. 6., Budapest, Hungary 25 / 27

 Ω

- **o** fit to MC data Sz. Borsanyi et.al., JHEP 1011 (2010) 077
- \bullet $T < 150 \,\mathrm{MeV}$ determines HRG parameters (pion mass input)

13. Zimányi WINTER SCHOOL ON HEAVY ION PHYSICS, Dec. 2. - Dec. 6., Budapest, Hungary 25 / 27

 Q ^{α}

- fit to MC data Sz. Borsanyi et.al., JHEP 1011 (2010) 077
- \bullet $T < 150 \,\mathrm{MeV}$ determines HRG parameters (pion mass input)
- $\gamma_{\mathit{hadr}}^2 = (\, \mathcal{T} / \, \mathcal{T}_0)^2 \colon$ fit $\, \mathcal{T}_0 \,$ to avoid large hadron pressure

- fit to MC data Sz. Borsanyi et.al., JHEP 1011 (2010) 077
- \bullet $T < 150 \,\mathrm{MeV}$ determines HRG parameters (pion mass input)
- $\gamma_{\mathit{hadr}}^2 = (\, \mathcal{T} / \, \mathcal{T}_0)^2 \colon$ fit $\, \mathcal{T}_0 \,$ to avoid large hadron pressure
- \bullet $T > 300 \,\mathrm{MeV}$: QGP parameters (fixed

 $m_q = 330 \,\text{MeV}, m_h = 600 \,\text{MeV}$

- fit to MC data Sz. Borsanyi et.al., JHEP 1011 (2010) 077
- \bullet $T < 150 \,\mathrm{MeV}$ determines HRG parameters (pion mass input)
- $\gamma_{\mathit{hadr}}^2 = (\, \mathcal{T} / \, \mathcal{T}_0)^2 \colon$ fit $\, \mathcal{T}_0 \,$ to avoid large hadron pressure
- \bullet $T > 300 \,\mathrm{MeV}$: QGP parameters (fixed

 $m_a = 330 \,\text{MeV}, m_h = 600 \,\text{MeV}$

• quark and gluon width depends on the number of hadrons $\gamma_{\textit{QGP}}^2 = \gamma_0^2 + \textit{cN}_{\textit{hadr}}^{\alpha}$

13. Zimányi WINTER SCHOOL ON HEAVY ION PHYSICS, Dec. 2. - Dec. 6., Budapest, Hungary 25 / 27

Outlines

- 1 [The QCD equation of state](#page-2-0)
- 2 [Phases of QCD](#page-9-0)
- 3 [Gibbs paradox](#page-17-0)
- [Mathematical treatment of a generic spectrum](#page-20-0)
- 5 [QCD thermodynamics](#page-27-0)

6 [Conclusions](#page-37-0)

13. Zimányi WINTER SCHOOL ON HEAVY ION PHYSICS, Dec. 2. - Dec. 6., Budapest, Hungary 26 / 27

イロメ イ押メ イヨメ イヨメ

 $2Q$

Conclusions

- changing number of particle species:
	- change ground state, or
	- change peaks of the spectrum
- physical example: Gibbs paradox:
	- \bullet in ideal gas case: diconsintuity in N_{eff}
	- in interacting case: continuous change in N_{eff}
- application to QCD ($T_c = 156 \,\text{MeV}$)
	- for $T < T_c$: HRG
	- for $T > 3T_c$: QGP
	- for $3T_c > T > T_c$ mixed phase with non-quasiparticle spectra new phase of QCD matter

Outlook

- cross-correlations (through QP-multiparticle cont. overlap)
- transport coefficients

13. Zimányi WINTER SCHOOL ON HEAVY ION PHYSICS, Dec. 2. - Dec. 6., Budapest, Hungary 27 / 27

 (0.113333334)

 Ω