Flow measurements at CMS

Dávid Englert

Wigner RCP, Eötvös University

for the CMS Collaboration

CMS detector

Subdetectors used for flow studies

- Tracker $|\Delta \eta|$ up to 5 (charged hadrons)
- HF (Event plane and centrality determination)
- Full acceptance in Φ and large acceptance in η \rightarrow provides wide domain for correlation analysis

Flow in heavy ion collisions

Anisotropic azimuthal distribution of particles in coordinate space Anisotropic azimuthal distribution of particles in momentum space

Distribution decomposed into Fourier series:

almond shaped fireball

Overlap of nuclei define the reaction plane which is estimated by the experimental observable -> event plane

Sources that can contribute to the measured flow value:

- geometry driven (almond shape) Flow
- initial state fluctuations
- jet and dijet events
- resonances
- other type of correlations

 $\frac{dN}{d\Phi} \sim a_0 \left| 1 + 2\sum_{n=1}^k v_n \cos(n(\Phi - \Psi_n)) \right|$

v_n - anisotropic harmonic flow coefficient

Dávid Englert

Studies of flow phenomena in CMS

Event plane determined via transverse energy in HF detectors

• Two particle Δη-ΔΦ correlation analysis method (discussed in detail)

$$\frac{1}{N_{trig}} \frac{dN^{pair}}{d\Delta\Phi} \sim 1+2\sum_{n=1}^{inf} V_{n\Delta}\cos(n\Delta\Phi)$$

 $v_2(p_T^{trig})$ extracted using factorization assumption:

 $V_{n\Delta} (p_{T}^{\text{trig}}, p_{T}^{\text{assoc}}) = v_{2}(p_{T}^{\text{trig}})v_{2}(p_{T}^{\text{assoc}})$

• Multiparticle correlations: Multi-particle cumulants and LYZ

Flow harmonics can be obtained from the cumulant terms of the cumulant expansion

Two particle correlation analysis

Perfect tool for examining:

- geometry of the particle production process
- the initial-state of the medium that is created in the collision.

One of the techniques to extract single particle v_n

Two particle correlation analysis

Dávid Englert

Understanding two particle correlation analysis – specific regions and their causes

Two particle correlation analysis - azimuthal correlation

Elliptic flow (v₂) in PbPb at CMS

PRC 87(2013) 014902 EPJC 72 (2012) 2012

four methods with different sensitivities to flow and non-flow fluctuations:

- $v_2(\psi_2) EP$ method
- $v_2\{2, |\Delta \eta| > 2\}$ 2 particle corr.
- v₂{4} 4-particle cum.
- v₂{LYZ} Lee Yang zero

v₂{LYZ} and v₂{4} are less sensitive to non-flow correlations

 $v_{2}{LYZ} \approx v_{2}{4} < v_{2}(\psi_{2}) \approx v_{2}{2,|\Delta \eta| > 2}$

Triangular flow (v_3) in PbPb

Factorization

Assuming factorization:

Factorization test:

 $v_n(p_T^{trig})$ derived from two particle correlation analysis for different p_T^{ref} in ultra central collisions

Ultra central collisions 0 – 0.2 %

tria

accoc)

Factorization breakdown in hydrodynamics

Is factorization breakdown really inconsistent with hydro?

$$V_{n\Delta}(p_T^{trig}, p_T^{assoc}) \stackrel{?}{=} v_n(p_T^{trig}) v_n(p_T^{assoc})$$

Introducing the factorization ratio r_n to quantitatively measure the breakdown:

$$r_{n} = \frac{V_{n,\Delta}(p_{T}^{trig}, p_{T}^{assoc})}{\sqrt{V_{n,\Delta}(p_{T}^{trig}, p_{T}^{trig})}\sqrt{V_{n,\Delta}(p_{T}^{assoc}, p_{T}^{assoc})}}$$

Fluctuating flow angles (ψ_n)

Event plane angle Ψ_n (determined by final-state particles) is a function of $p_{_T}$ due to event-by-event fluctuating initial-state geometry

$$r_{n} = \frac{\langle v_{n}(p_{T}^{trig})v_{n}(p_{T}^{assoc})\cos[n(\Psi_{n}(p_{T}^{trig})-\Psi_{n}(p_{T}^{assoc}))]\rangle}{\sqrt{v_{n}^{2}(p_{T}^{trig})v_{n}^{2}(p_{T}^{assoc})}}$$

Factorization breakdown in hydrodynamics

In general, $r_n \le 1$, if the event-by-event Ψ_n depends on p_T

- Violation of constraints (e.g. $V_{n\Delta}(p_T^A, p_T^A) < 0$) indicates non-flow correlations
- Simulations (Heinz et al. PRC 87, 034913 (2013)) indicate that viscous effects (η /s) reduce the amount by which event-by-event fluctuations break factorization!

Factorization breakdown in hydrodynamics, r,

Sizeable effect for v_2 in ultra-central events

Dávid Englert

Factorization breakdown in hydrodynamics, r₂

Sizeable effect for v_2 in ultra-central events

Dávid Englert

Zimányi School, 2-6. December 2013

15

MC-KLN

profiles

Factorization breakdown in hydrodynamics, r₃

Smaller effect for $v_3 \rightarrow$ is it more sensitive to η/s , and therefore reduces factorization?

Dávid Englert

Factorization breakdown in hydrodynamics, r₄

Smaller effect for $v_4 \rightarrow$ is it more sensitive to η/s , and therefore reduces factorization?

Dávid Englert

Summary

Different measurement techniques (EP, two-particle, multi-particle) with varying sensitivity to flow and non-flow effects were used to extract v_n

Factorization breakdown

• consistent with hydrodynamics, as besides harmonics coefficients v_n , associated anisotropic flow angles Ψ_n are also dependent on p_T

 \bullet considerable deviation from factorization if the difference between $p_{T}^{\ trig}$ and $p_{T}^{\ assoc}$ is large

• ultra-central collisions - where the anisotropic flow is dominated by initial density fluctuations rather than overlap geometry - yield the largest deviation from perfect factorization

Thank you for your attention!

CMS flow and correlations results

	Analysis	Туре	Report	Publication
HIN-10-002	Elliptic flow and low-pt spectra	PbPb	arXiv:1204.1409	PRC 87(2013) 014902
HIN-11-001	Dihadron correlations	PbPb	arXiv:1105.2438	JHEP 07 (2011) 076
HIN-11-006	Dihadron correlations centrality dependence	PbPb	arXiv:1201.3158	EPJC 72 (2012) 2012
HIN-11-009	Neutral pion v_2 in PbPb collisions	PbPb	arXiv:1208.2470	PRL 110 (2013) 042301
HIN-11-012	Azimuthal anisotropy at high \textbf{p}_{τ}	PbPb	arXiv:1204.1850	PRL 109 (2012) 022301
HIN-12-015	Ridge (2-particle correlations) in pPb	pPb	arXiv:1210.5482	PLB 718 (2013) 795
HIN-13-002	2- and 4-particle correlations in pPb	pPb	arXiv:1305.0609	PLB 724 (2013) 213
HIN-11-005	Higher order harmonics flow	PbPb	arXiv:1310.8651	submitted to PRC
HIN-12-010	Very high p_{τ} triggered correlations	PbPb	PAS	-
HIN-12-011	v_n in ultra-central collisions	PbPb	PAS	-

CMS Heavy-Ion Public results: https://twiki.cern.ch/twiki/bin/view/CMSPublic/PhysicsResultsHIN