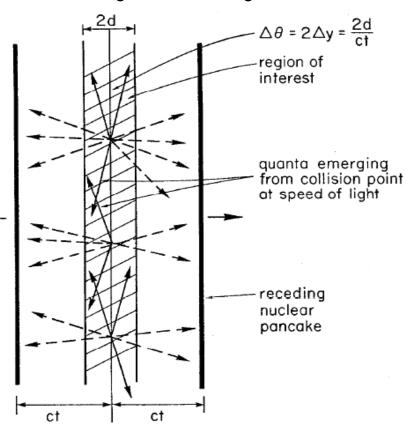



# ZIMÁNYI SCHOOL 2013

December 2-6.
Budapest, Hungary



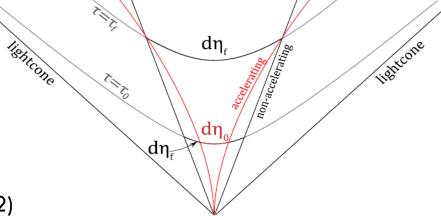
# INITIAL ENERGY DENSITY IN LHC P+P COLLISIONS


## The Bjorken-estimate

- □ The original idea: energy density based on dE/dy
- □ QGP critical  $\varepsilon$ : ≤1 GeV/fm<sup>3</sup> (from  $\varepsilon_c$ =6-8×T<sub>c</sub><sup>4</sup>)
- □ Result (~2000x cited)

$$E = N \frac{dE}{dy} \Delta y = N \frac{dE}{dy} \frac{1}{2} \frac{2d}{t} = \varepsilon \cdot Ad$$

$$\varepsilon_{Bj} = \frac{1}{R^2 \pi \tau_0} \frac{dE}{d\eta} = \frac{\langle E \rangle}{R^2 \pi \tau_0} \frac{dn}{d\eta}$$


- □ Needs correction!
- □ Ref.: Phys.Rev. D27 (1983)



#### An advanced estimate

- □ Fact: dn/dy not flat
- □ Finiteness & acceleration
- Analytical investigation:
  - $lue{}$  Acceleration parameter  $\lambda$
- □ Two modifications:
  - $\square$  y $\neq$  $\eta$  &  $\eta_{\text{final}} \neq \eta_{\text{initial}}$
- Work by acceleration!
- □ Correction w.r.t. EoS:

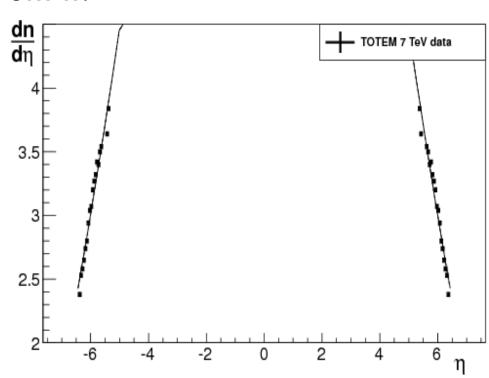
$$\varepsilon = \varepsilon_{Bj} (2\lambda - 1) \left(\frac{\tau_f}{\tau_i}\right)^{(\lambda - 1)(2 - c_{\text{sound}}^2)}$$



E.g.: J.Phys.G35 (2008) 104128 (arXiv:0805.1562)

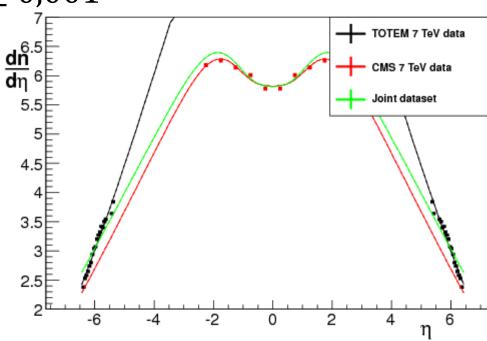
#### Initial energy density at LHC

- Rough estimate possible via the Bjorken formula
  - □ Number of particles at midrapidity: 5.89 (CMS, ALICE)
  - Average energy:  $\langle m_t \rangle = 0.562$  GeV (CMS)
  - Initial radius of the system R: ~1.081 fm (TOTEM,  $\sigma_{inel}$ )
  - Formation time  $\tau_0$ : 1 fm/c (conservative estimate)
- Energy density from this:


$$\varepsilon_{Bj} = \frac{1}{R^2 \pi \tau_0} \frac{dE}{d\eta} = \frac{\langle E \rangle}{R^2 \pi \tau_0} \frac{dn}{d\eta} = \frac{0.562 \times 5.89 \,\text{GeV}/c}{3.67 \,\text{fm}^3/c} \approx 0.90 \,\text{GeV}/\text{fm}^3$$

Just below critical? Important question!

#### Correction from initial acceleration


- Initial acceleration pushes outer volume elements
- This modifies the dn/dη distribution
- Estimate acceleration from it!
- $\Delta = 1$ : no acceleration
- □ TOTEM fit:  $\lambda = 1.073\pm0.001\pm0.004$
- Without EoS: 20%

$$\varepsilon = \varepsilon_{Bj} (2\lambda - 1) \left( \frac{\tau_f}{\tau_i} \right)^{(\lambda - 1)(1 - c_s^2)}$$



#### TOTEM & CMS data combined (7 TeV)

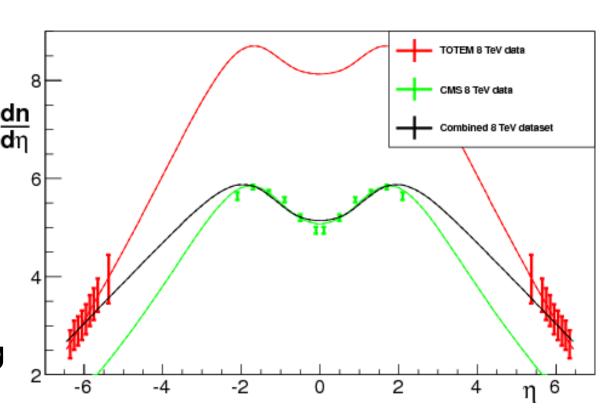
- □ Fit results:
  - $^{\square}$  TOTEM:  $\lambda = 1,073 \pm 0,003$
  - $^{\square}$  CMS:  $\lambda = 1,061 \pm 0,002$
  - $^{f \square}$  Joint data:  $\lambda=1,054\pm0,001$
- □ Normalization OK?
  - Single diffractive vs. non-single diffractive?
- Lambda does not change significantly



# Comment: $dn/d\eta$ @ 7 TeV is not trivial

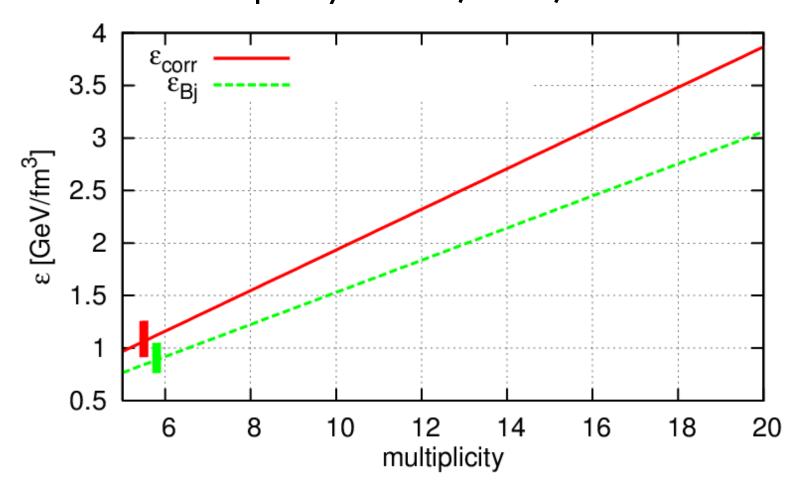
- Not trivial for MC models
- □ TOTEM Coll., EPL, 98 (2012) 31002




# Preliminary results on 8 TeV

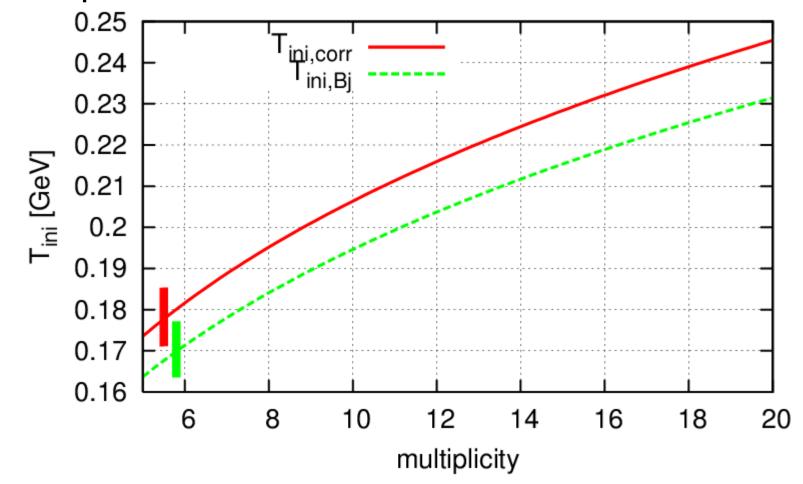
- CMS vs. TOTEM normalization not trivial
- $\square$  Both datasets describable by  $\lambda = 1.07 \pm 0.01$
- □ Joint fit:

$$\lambda = 1.046 \pm 0.001$$


Data are not final

Systematicanalysis coming




#### Dependence on particle number

Several multiplicity classes, 6-20, even 30 seen!



#### Initial temperature estimate

□ Temperature from  $\varepsilon \sim T^4$ 



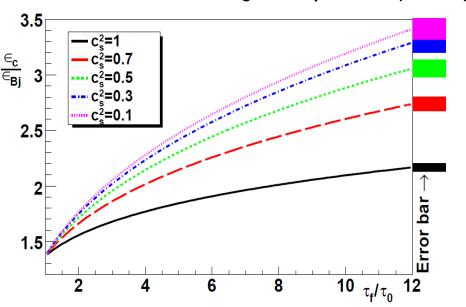
#### Systematic uncertainties

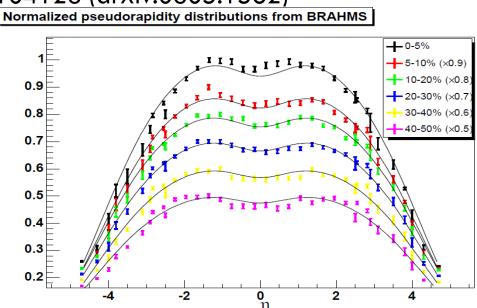
#### □ All sources of uncertainties:

| parameter                   | value                    | statistical uncertainty | systematic uncertainty                  |
|-----------------------------|--------------------------|-------------------------|-----------------------------------------|
| λ                           | 1.073                    | 0.1%                    | 0.4% (from data)                        |
| c <sub>s</sub> <sup>2</sup> | 0.1                      | -                       | $-2\%+0.2\%$ (if $0.05 < c_s^2 < 0.5$ ) |
| $\tau_{\rm f}/\tau_0$       | 2                        | <del>-</del>            | -4%+10% (if ratio 1.54)                 |
| $	au_0$                     | 1 fm/c                   | <del>-</del>            | understimation on $\epsilon$            |
| R (from $\sigma_{inel}$ )   | 1.081 fm                 | 0.5%                    | 1.5% (from data)                        |
| $\langle {\rm m_t} \rangle$ | $0.562~\mathrm{GeV/c^2}$ | 0.5%                    | 3% (from data)                          |
| dN/dη                       | 5.985                    | 0.2%                    | 3% (from data)                          |

#### Conclusion at 7 TeV:

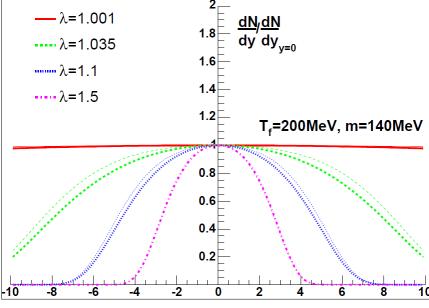
## Is it unprecedented? Consequences?

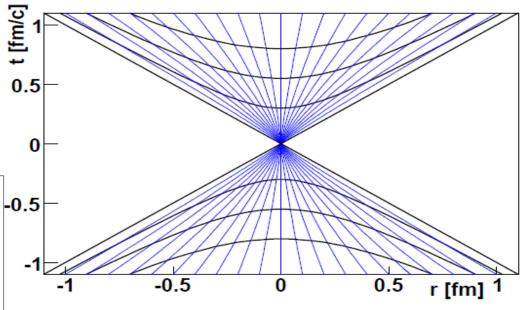

- Bjorken and Landau worked out hydro for pp and pA
- □ Success of hydro to describe h+p, with  $\langle n \rangle = 7-8...$ Phys.Lett. B422 (1998) 359-368
- Bjorken: it is not hadrons that play billiard balling
- □ If p+p is a complex system:
  - □ Gamma/pi0 ratio
  - Radial flow
  - Elliptic flow, scaling
  - HBT radii, scaling
  - Low mass dilepton enhancement
  - Direct photon enhancement
- R<sub>AA</sub> might not be the best measure: divide by length scale?


#### Summary

- Experimentally widely used Bjorken est. at 7 TeV
- $\square$  Advanced estimate: acceleration work, from dn/d $\eta$
- $\square$  Results on the initial  $\varepsilon$  for  $c_s^2=0.1$ , at  $\tau_f/\tau_{ini}=2$
- $\blacksquare$  From TOTEM data:  $\epsilon_{\rm ini}$ = (1.14  $\pm$  0.01  $\pm$  0.2) GeV/fm<sup>3</sup>
  - This at dN/dy=6 & linearly rises with multiplicity!
- □ Critical energy density: 1 GeV/fm³
- Results not incompatible with supercrit. sQGP phase

# Initial energy density at RHIC


- Bjorken estimate from BRAHMS: 5 GeV/fm<sup>3</sup>
- Advanced estimate gives:  $\varepsilon = \varepsilon_{Bj} (2\lambda 1) \left(\frac{\tau_f}{\tau_i}\right)^{(\lambda)}$  Correction: 2-3x, result 15 GeV/fm³, QCD agreement!
- Corresponds to  $T_{ini} \cong 2T_c \cong 340 \text{ MeV}$
- Confirmed by photon spectra at PHENIX, published 2010
- Reference e.g.: J.Phys.G35 (2008) 104128 (arXiv:0805.1562)






## A solution of relativistic hydro

- Velocity: tanh(λη)
- $\square$  Acceleration:  $\lambda \neq 1$
- □ Density:  $(\tau/\tau_0)^{\lambda}$
- dn/dy calculable!





- □ Compare this to RHIC data!
- dn/dy measurement yields
   advanced initial ε estimate
- □ Significant correction at RHIC!
- Reference: Phys.Lett. B663 (2008) 306-311 (nucl-th/0605070)

#### Advanced estimate at 7 TeV

- □ Fit result:  $\lambda$ =1.073
- □ Conservatively:  $c_s^2 = 0.1$
- $\sim 25\%$  correction
- Input parameters:
  - dN/dy at midrap.: 5.89
  - Average m<sub>+</sub>: 0.562 GeV <sup>1.2</sup>
  - □ Area: 3.67 fm<sup>2</sup>
    - From cross sections
  - □ Freeze-out time / form. time: at least 2
- □ Bjorken result: 0.90 Gev/fm³
- □ Corrected result: 1.14 GeV/fm³



#### Sources of uncertainties

- $\square$  For the correction factor  $\varepsilon/\varepsilon_{\rm Bi}$ :
  - lacksquare Fit parameter  $\lambda$
  - Statistical error (from the data)
  - Speed of sound c<sub>s</sub><sup>2</sup>
  - Duration  $\tau_f/\tau_i$
- □ For the original Bjorken-estimate:
  - Main uncertainty source: multiplicity at midrapidity dN/dy
  - Area (if taken from cross-section): very precise
  - Formation time
  - Average transverse mass