

Contents

Introduction

- FRG
- Phase transitions (SSB)

O(N) model in the large N limit

Flow equation

Solving the flow equation

- Local flow
- Exact solution

Universality & BMB

- Eigenperturbation, critical exponents
- Bardeen-Moshe-Bander phenomenon

Conclusion

Euclidean QFT *n*-point function

$$\langle \varphi(x_1) \dots \varphi(x_n) \rangle := \mathcal{N} \int \mathcal{D}\varphi \, \varphi(x_1) \dots \varphi(x_n) \, \mathrm{e}^{-S[\varphi]}$$

... can be produced from the generating functional

$$Z[J] \equiv e^{W[J]} = \int \mathcal{D}\varphi \, e^{-S[\varphi] + \int J\varphi} \longrightarrow \langle \varphi(x_1) \dots \varphi(x_n) \rangle = \frac{1}{Z[0]} \left(\frac{\delta^n Z[J]}{\delta J(x_1) \dots \delta J(x_n)} \right)_{J=0}$$

The effective action (by Legendre trf.)

$$\Gamma[\phi] = \sup_{J} \left(\int J\phi - W[J] \right)$$

$$\phi = \frac{\delta W[J]}{\delta J} = \frac{1}{Z[J]} \frac{\delta Z[J]}{\delta J} = \langle \varphi \rangle_J$$

$$\delta\Gamma[\phi] \over \delta\phi(x) = J(x)$$
 Q-EOM: Describes the dynamics of the VEV + quantum fluc. included

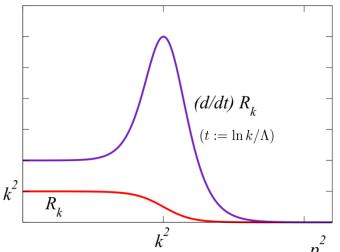
Wilsonian idea: instead PT, we integrate out momentum shell by momentum shell

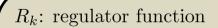
Effective average action: $\Gamma_{k\to \Lambda} \simeq S_{\mathrm{bare}}, \quad \Gamma_{k\to 0} = \Gamma$

How?

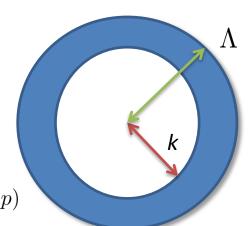
$$Z_k[J] := \int \mathcal{D}\varphi \ e^{-S[\varphi] - \Delta S_k[\varphi] + \int J\varphi}$$

Momentum-dependent mass term $\Delta S_k[\varphi] := \frac{1}{2} \int_p \varphi(p) R_k(p) \varphi(-p)$





- $\lim_{p^2/k^2 \to 0} R_k(p) > 0$ IR regulator
- $\lim_{k^2/p^2 \to 0} R_k(p) = 0$ original theory
- $\lim_{k^2 \to \Lambda \to \infty} R_k(p) = \infty$ classical theory



We apply the same routine for our new theory

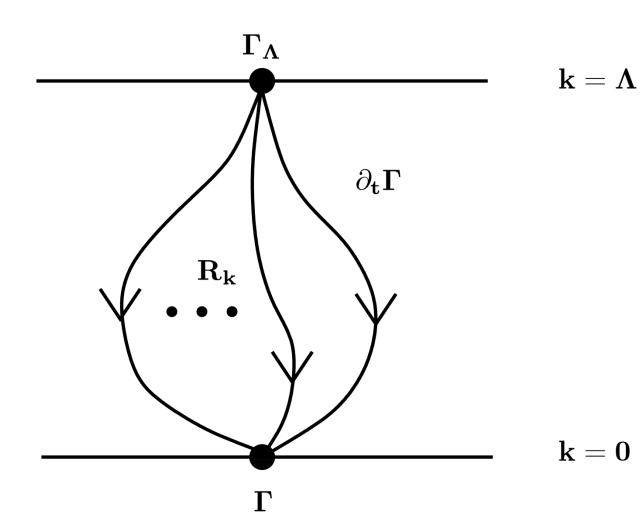
- The "average" effective $\Gamma_k[\phi] = \sup_J \left(\int J\phi W_k[J] \right) \Delta S_k[\phi]$ action
- The VEV $\phi(x) = \langle arphi(x)
 angle_J = rac{\delta W_k[J]}{\delta J(x)}$
- Q-EOM $\dfrac{\delta\Gamma[\phi]}{\delta\phi(x)}+(R_k\phi)(x)=J(x)$

The scale dependence of the avarage effective action: the flow eq.

$$\partial_t \Gamma_k[\phi] = \frac{1}{2} \int \frac{d^D q}{(2\pi)^D} \left(\frac{\delta^2 \Gamma_k[\phi]}{\delta \phi(q) \delta \phi(-q)} + R_k(q) \right)^{-1} \partial_t R_k(q)$$

$$-\mathbf{q}$$

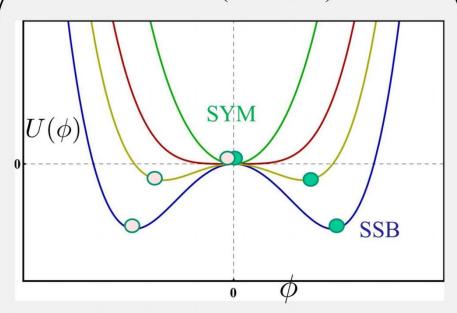
- No func. int.
- IR & UV regulator
- We can choose regulator
- $\equiv G_k$ "full propagator"
- One-loop structure
 - PT expansion can be recovered $(t:=\ln k/\Lambda)$



PHASE TRANSITIONS

Introduction

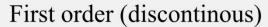
Second order (continous)

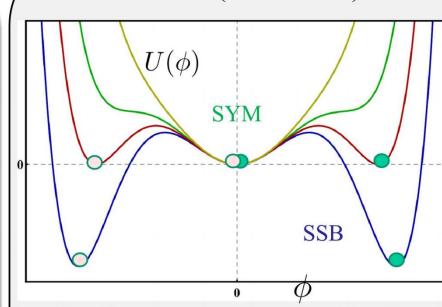


$$U(\phi) = \frac{m^2}{2}\phi^2 + \frac{\lambda}{4}(\phi^2)^2$$

Field VEV $\rightarrow 0$ continously

Universality



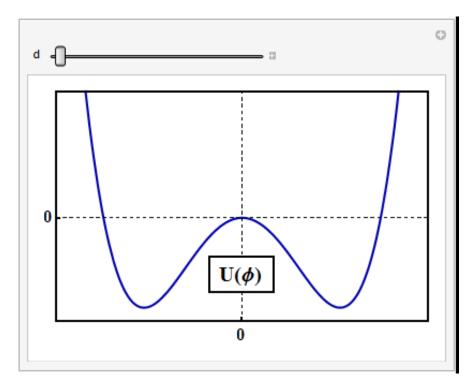


$$U(\phi) = \frac{m^2}{2}\phi^2 + \frac{\lambda}{4}(\phi^2)^2 + \frac{\tau}{6}(\phi^2)^3$$

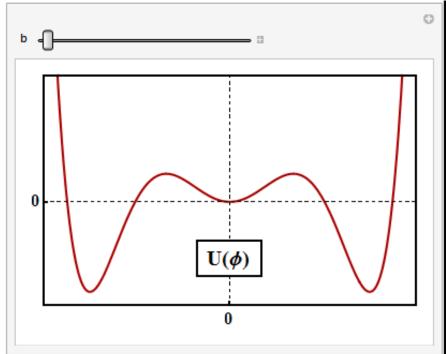
Field VEV $\rightarrow 0$ discontinuously

Non-universality

Second order phase transition



First order phase transition



FLOW EQUATION

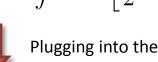
Introduction

To solve the RG flow: an ansatz for the effective action is needed

Derivative Expansion/ Local Potential Approximation (LPA)

The *O(N)* symm. effective action
$$\Gamma_k = \int d^Dx \left[\frac{1}{2}(\partial\phi)^2 + U_k(\phi^a\phi_a)\right] \qquad Z \equiv 1$$

$$\bar{\rho} := \phi_a\phi^a/2$$
 Plugging into the flow



$$\partial_t U_k = \frac{1}{2} (2\pi)^{-3} \int_q \partial_t R_k \left(\frac{N-1}{M_0} + \frac{1}{M_1} \right) \begin{vmatrix} M_0 := q^2 + R_k + U_k' \\ M_1 := q^2 + R_k + U_k' + 2\rho U_k'' \\ (.)' := \frac{\delta}{\delta \rho} \end{vmatrix}$$

- Using the optimized regulator: $R_k = (k^2 q^2)\theta(k^2 q^2)$ the loop integral is analytic
- Taking the large N-limit (the universality class of the ideal Bose gas)

The flow for the dimensionless effective potential

$$\left(\partial_t u'=-2u'+
ho u''-rac{u''}{(1+u')^2}
ight)$$

Dimensionless quantities

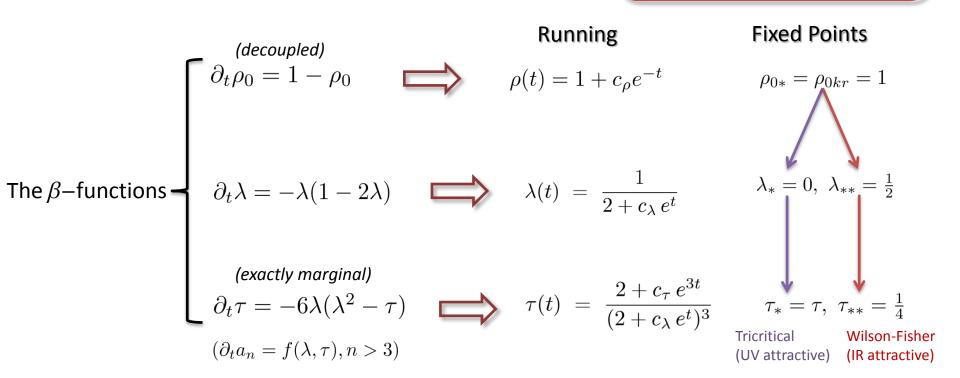
$$u' \equiv U'/k^2$$
$$u'' \equiv U''/k$$
$$\rho \equiv \bar{\rho}/k$$

LOCAL FLOW

Solving the flow eq.

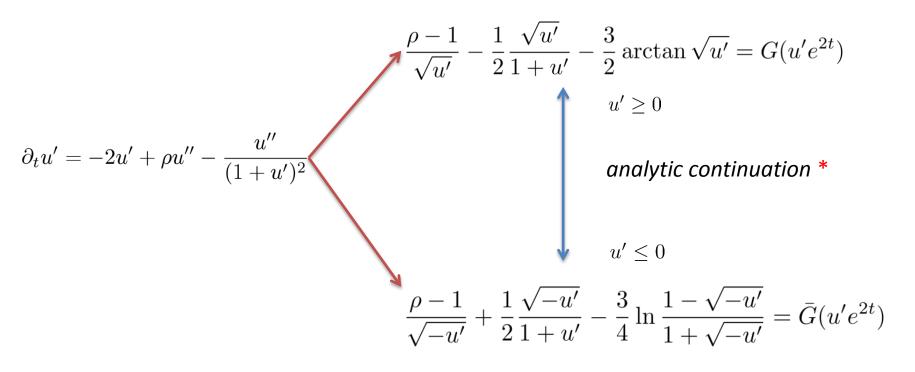
Expanding the potential in terms of polynomial couplings
$$u = \sum_{n=1}^{n_{trunc}} \frac{a_n}{n!} (\rho - \rho_0)^n$$

$$u'(\rho_0) = 0 \quad \lambda \equiv a_2 \quad \tau \equiv a_3$$



Constants from initial value $c_{
ho}=
ho_{0,\Lambda}-1, \ c_{\lambda}=1/\lambda_{\Lambda}-2, \ c_{ au}= au_{\Lambda}/\lambda_{\Lambda}^3-2$

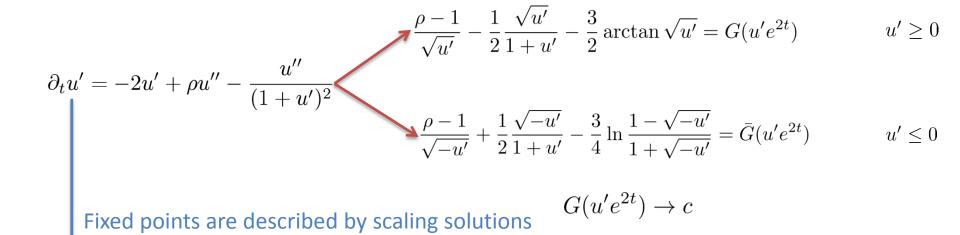
The flow equation can be solved analytically in the large N (by method of characteristics)



*
$$\frac{1}{i} \arctan ix = \frac{1}{2} \ln \left(\frac{1+x}{1-x} \right)$$

GLOBAL FLOW

Solving the flow eq.



$$\rho(u') = 1 + c\sqrt{u'} + H(u') \qquad u' \ge 0$$

$$\rho(u') = 1 + \bar{c}\sqrt{-u'} + \bar{H}(u') \qquad u' \le 0$$

...it turns out: $c = \bar{c}$

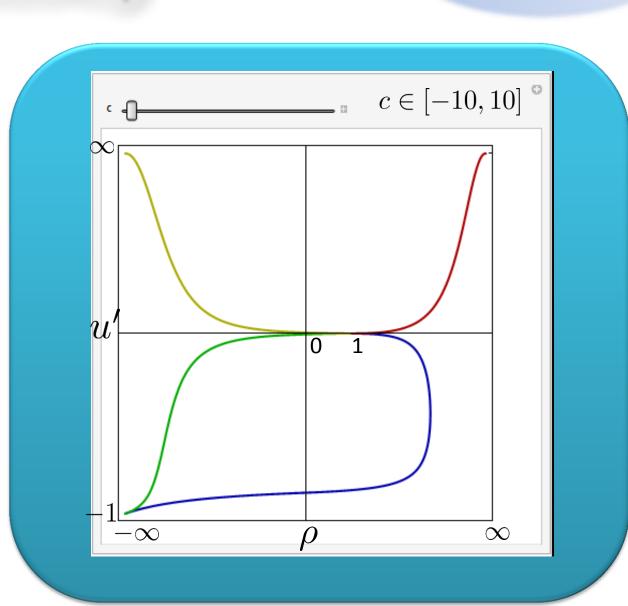
$$H(u') := \frac{1}{2} \frac{u'}{1+u'} + \frac{3}{2} \sqrt{u'} \arctan \sqrt{u'}$$
$$\bar{H}(u') := \frac{1}{2} \frac{u'}{1+u'} + \frac{3}{4} \sqrt{-u'} \ln \frac{1-\sqrt{-u'}}{1+\sqrt{-u'}}$$

 $\bar{G}(u'e^{2t}) \to \bar{c}$

Four branches describe the solution epending on the sign of c and u'

Issues

- 1. Branch continuation
- 2. Turning points

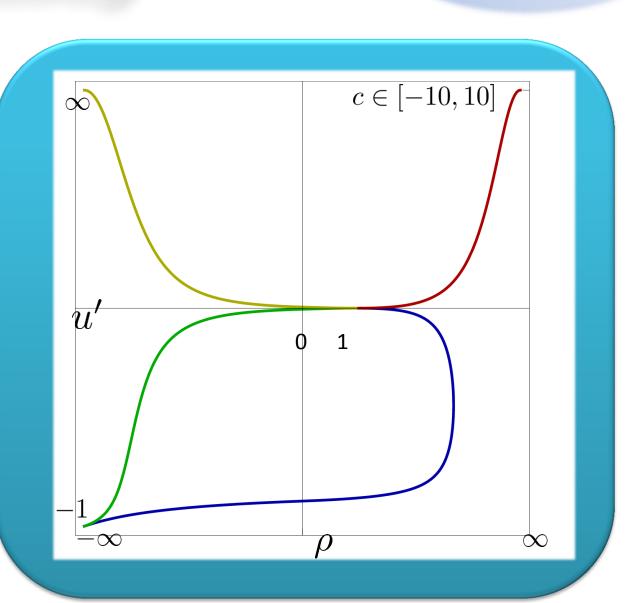


1. Branch continuation

$$u'_{+}(1) = u'_{-}(1) = 0,$$

 $u''_{+}(1) = u''_{-}(1) = 0,$
 $u'''_{+}(1) = \frac{2}{c^{2}} \neq u'''_{-}(1) = -\frac{2}{c^{2}}$

Continuation from positive to negative branch is not smooth enough

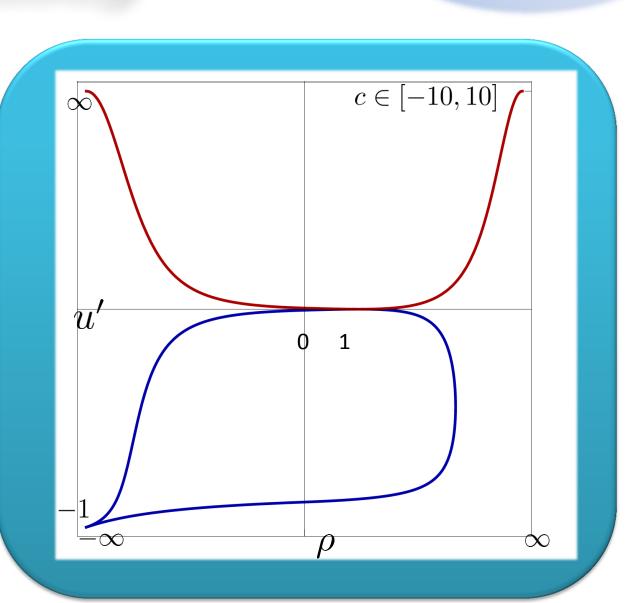


1. Branch continuation

$$u'_{+}(1) = u'_{-}(1) = 0,$$

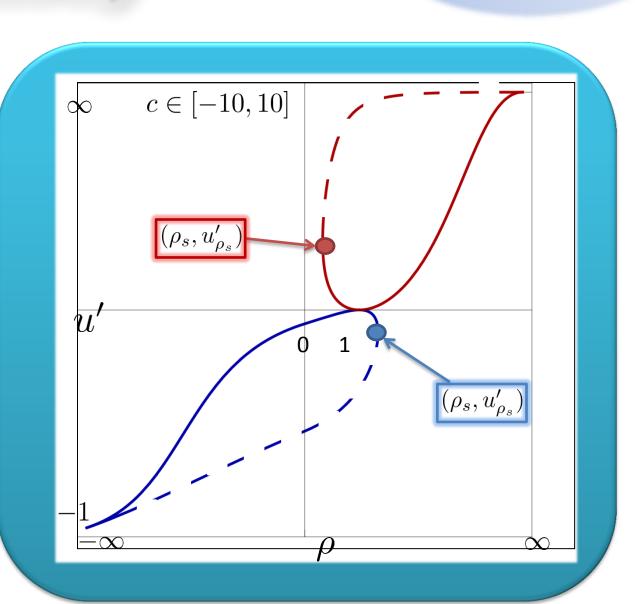
 $u''_{+}(1) = u''_{-}(1) = 0,$
 $u'''_{+}(1) = \frac{2}{c^{2}} \neq u'''_{-}(1) = -\frac{2}{c^{2}}$

Continuation from positive to negative branch is not smooth enough



2. Turning points

In this regime we have to choose either the dashed or the full line: "strong coupling"



GLOBAL VS LOCAL

The fixed point structure

The proper definition of the function:

We consider only $u' \geq 0$

Domain

 $\rho \geq 1$ $\rho \leq 1$

 $0 < \rho \le 1$ $\rho_s \ge \rho \le 1$

 $\rho \geq \rho_s$

$$B_{+}(u') \equiv 1 + c\sqrt{u'} + H(u')$$

$$B_{-}(u') \equiv 1 - c\sqrt{u'} + H(u')$$

Weak $(|c| > c_P)$ | Critical $(|c| = c_P)$ | Strong

 $c > c_P | c < -c_P | c = c_P | c = -c_P | c < c_P$ B_{+}

 B_{-}

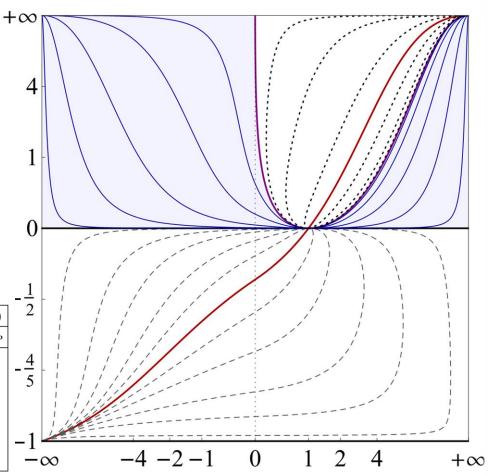
 B_{-}

 B_+ (a)

 $B_{-}(a)$

 $B_{-}(b)$

u	U
	$-\frac{1}{2}$
	$-\frac{4}{5}$
$B_{+} (a)$ $B_{+} (b)$	- <u>1</u>



 ρ

 $c_P = 3\pi/4$

The treshold value for the turning point

The fixed point structure

Using polynomial expansion we can identify the couplings as

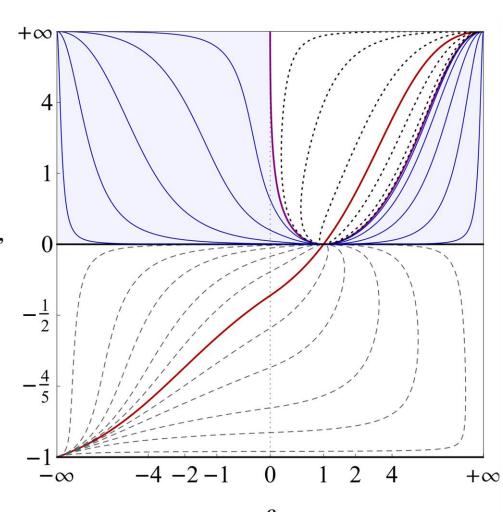
$$u = \sum_{n=1}^{n_{trunc}} \frac{a_n}{n!} (\rho - \rho_0)^n$$

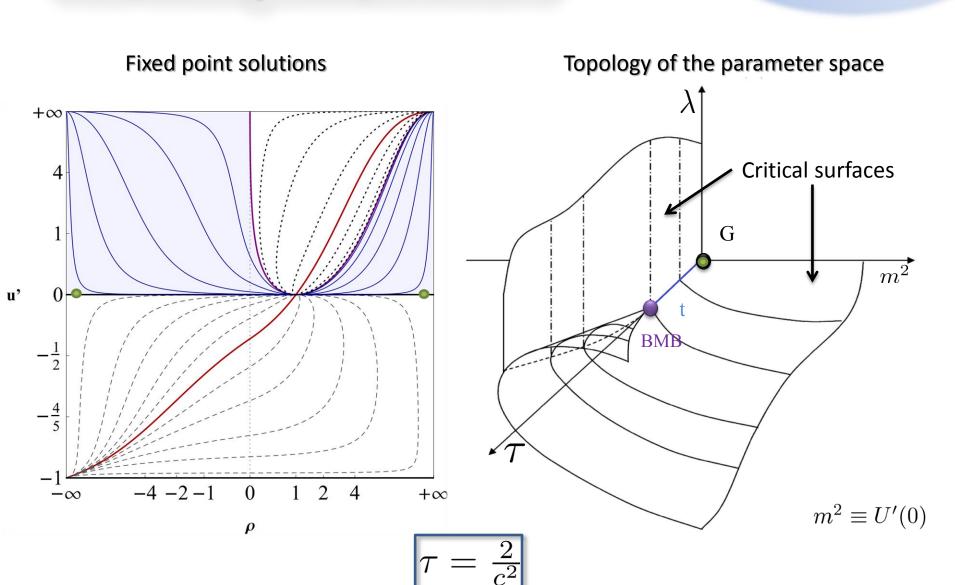
$$\lambda \equiv u''(\rho_0) \quad \tau \equiv u'''(\rho_0)$$

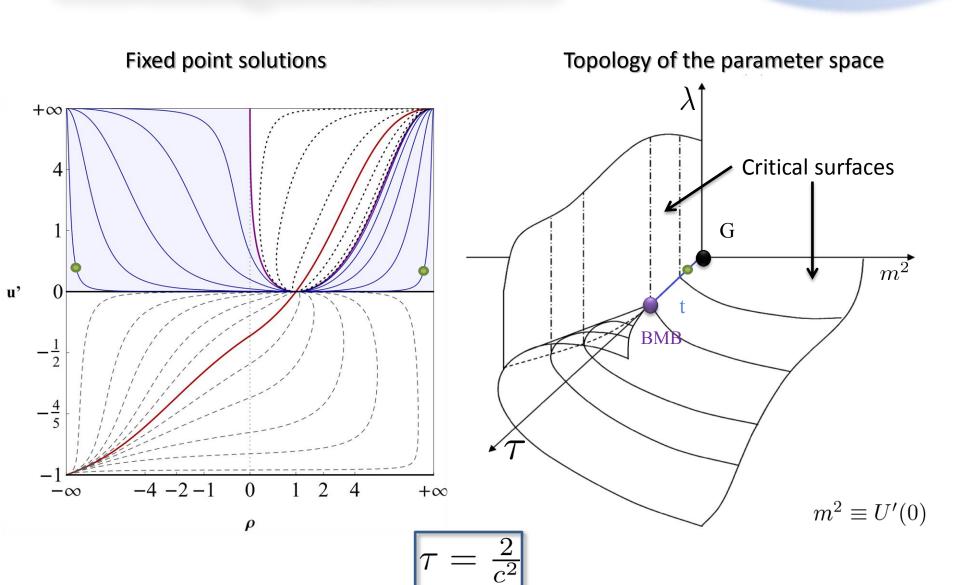
Thus if we tune the VEV to its critical value we can distinguish different type of fixed upoint solutions

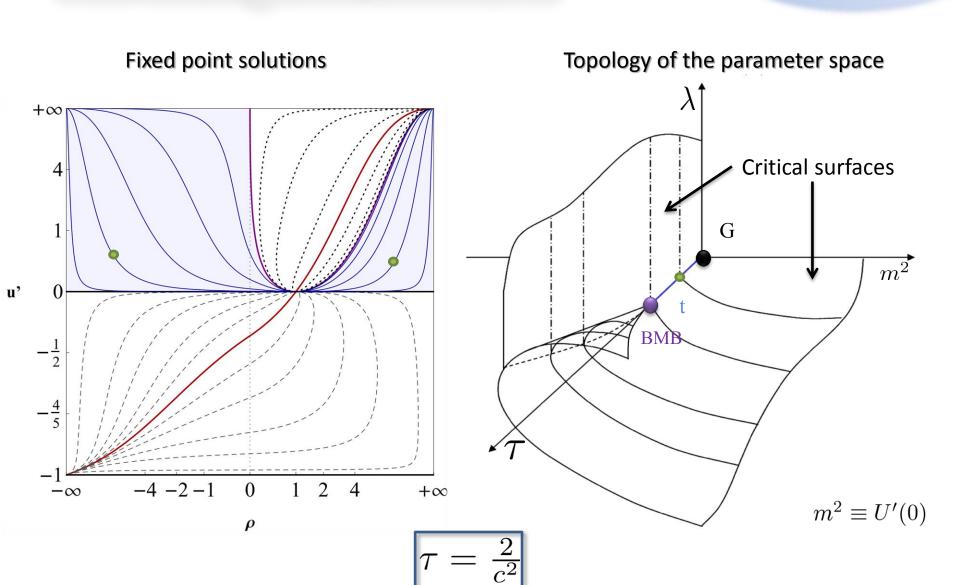
Gauss Wilson-Fisher Tricritical BMB

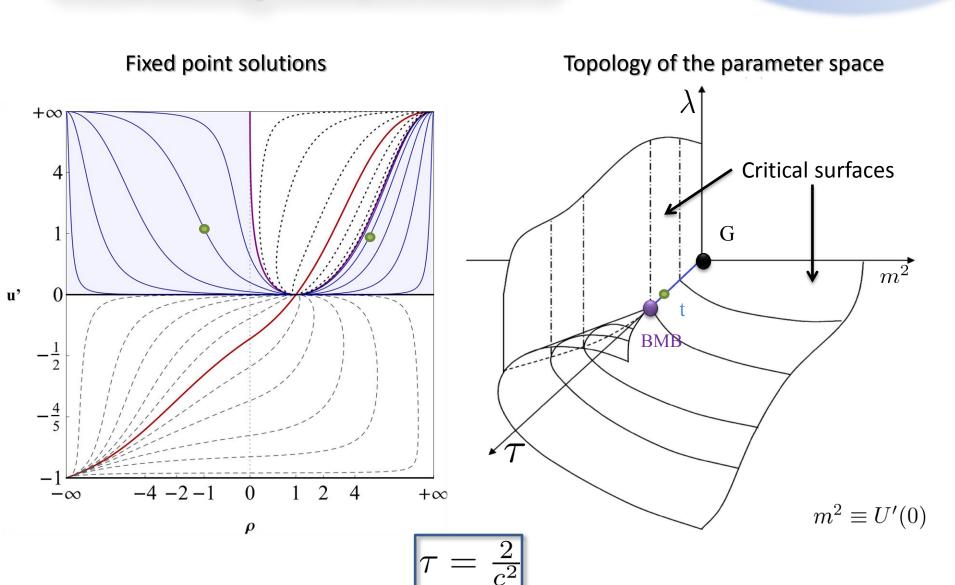
$$\rho_0 * = 1$$
 $\rho_0 * = 1$
 $\rho_0 * = 1$
 $\rho_0 * = 1$
 $\lambda_* = 0$
 $\tau_* = 0$
 $\tau_* = \frac{1}{4}$
 $\rho_0 * = 1$
 $\lambda_* = 0$
 $\tau_* = \frac{2}{c^2}$
 $\tau_* = \frac{2}{c^2}$

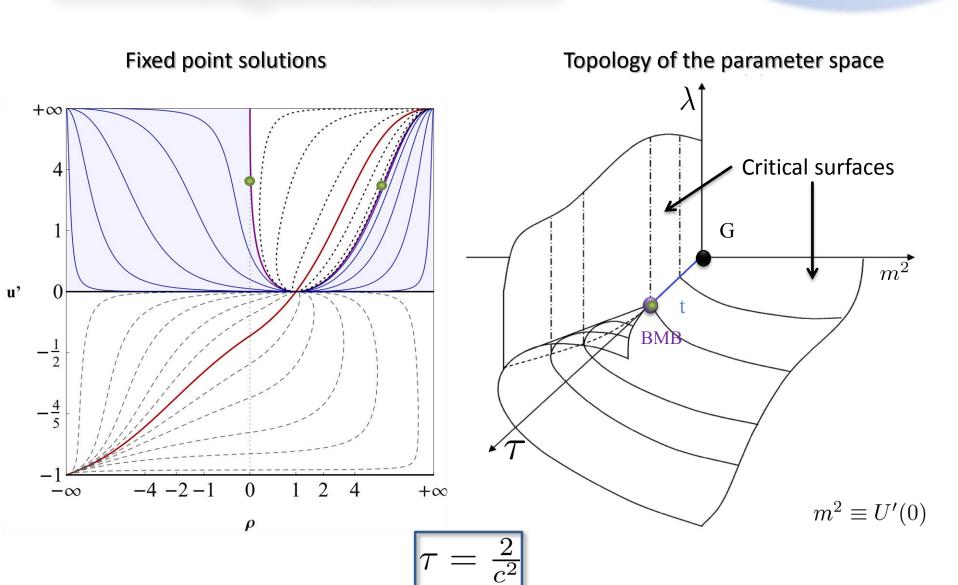






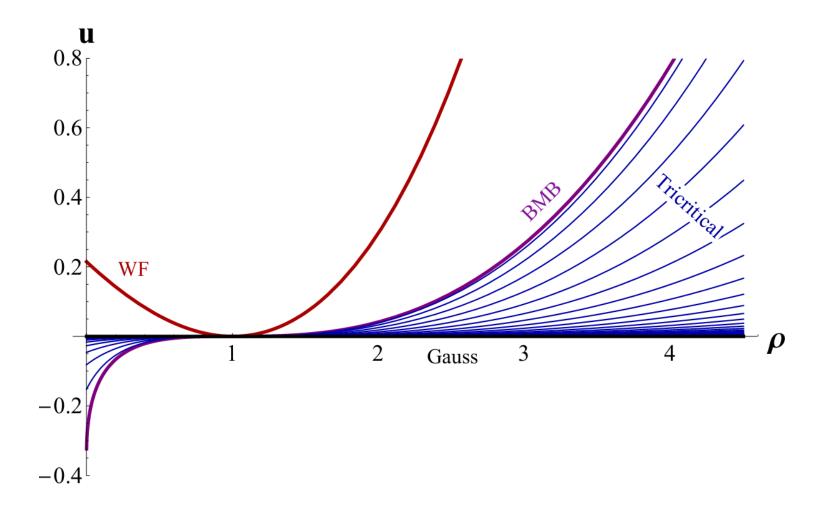






The fixed point structure

Integrating u' respect to ρ



The fixed point structure

The idea: perturbing around the scaling solution $u'(t,\rho,\epsilon)=u'_*(\rho)+\delta u'(t,\rho,\epsilon)$

$$u'(t,
ho,\epsilon) = u'_*(
ho) + \delta u'(t,
ho,\epsilon)$$

Inserting it into the flow equation we obtain the fluctuation equation

$$\partial_t \, \delta u' = 2 rac{u'}{u''} \left(\partial_
ho + rac{(u'u'')'}{u'u''}
ight) \delta u'$$

Solving it by separation of variables gives:
$$\delta u'(t,\rho,\epsilon)=\epsilon e^{\theta t}(u_*')^{\frac{1}{2}(1+\theta)}u_*''$$

The eigenperturbation equation reads: $\partial_t \delta u' = \theta \delta u'$

$$\partial_t \delta u' = \theta \delta u'$$

ANALITICITY CONDITION: the perturbation must be analytic

Restriction on θ

Remark:
$$\xi^{-1} = m \propto |\bar{\rho}_0|^{\nu}$$

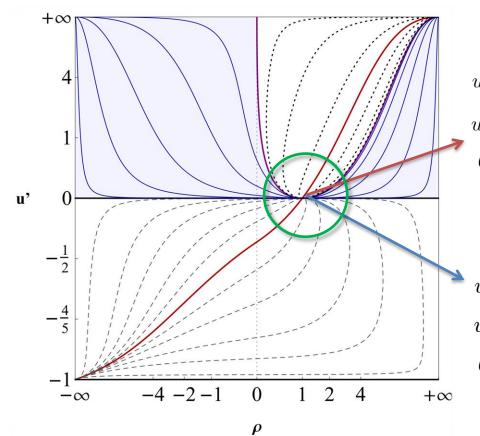
$$\nu = -1/\theta$$

CRITICAL **EXPONENTS**

The fixed point structure

$$\delta u'(t,\rho,\epsilon) = \epsilon e^{\theta t} (u'_*)^{\frac{1}{2}(1+\theta)} u''_* \qquad \boxed{\nu = -1/\theta}$$

$$u = -1/\theta$$



Wilson-Fisher

$$u'_* \propto \frac{1}{2}(\rho-1)$$
 for $\rho \to 1^\pm$
$$u''_* = \text{const.}$$

$$\theta \in \{-1,1,3,...\}$$

$$\nu = 1$$

Tricritical

$$u'_* \propto \frac{1}{c^2} (\rho - 1)^2 \quad \text{for } \rho \to 1^{\pm}$$

$$u''_* \propto \rho$$

$$\theta \in \{-2, -1, 0, 1, 2, 3, ...\}$$

$$\delta u' \propto \epsilon e^{\theta t} \rho^{\theta + 2}$$

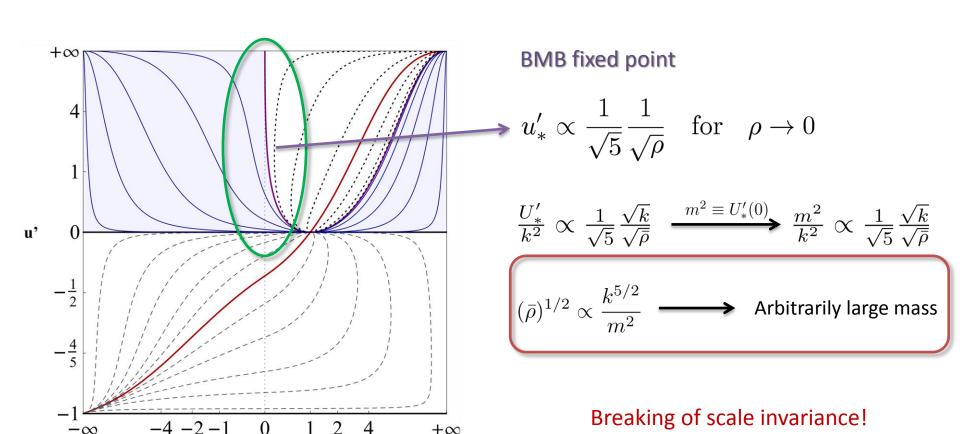
$$\nu = 1/2$$
 (mean-field)

BARDEEN-MOSHE -BANDER PH.

The fixed point structure

 ρ

The BMB fixed point solution has a singularity at $0 \longrightarrow demanding analyticity is useless$



Conclusion

Non-perturbative solution to a 3d, O(N) symmetric quantum field theory theory in the large N limit

Study of the fixed point solutions and phase transitions (WF, Tricrit., BMB)

Critical exponents recovered

BMB: UV fixed point with breaking of the scale invariance

LITERATURE

- [1] Bardeen-Moshe-Bander, Fixed Point and the Ultraviolet Triviality of
- (Φ ⁷2)_3^310.1103/PhysRevLett.53.2071
- [2] D. F. Litim, Optimisation of the exact renormal-isation group, Phys. Lett. B 486(2000) 92, [hep-th/0005245]
- [3] Edouard Marchais, PhD Thesis
- [4] M. Heilmann, D. F. Litim, F. Synatschke-Czerwonka and A. Wipf1, *Critical behavior of supersymmetric O(N) models in the large-N limit*,10.1103/PhysRevD.86.105006
- [5] Daniel F. Litim, Marianne C. Mastaler, Franziska Synatschke-Czerwonka, Andreas Wipf ,Critical behavior of supersymmetric O(N) models in the large-N limit
- [6] H. Gies, Introduction to the functional RG and applications to gauge theories, arXiv:hep-ph/0611146v1

