Dilepton creation based on an analytic hydrodynamic solution

Levente Krizsán, Máté Csanád Eötvös University, Budapest

13. Zimányi WINTER SCHOOL ON HEAVY ION PHYSICS

December 3, 2013

Levente Krizsán, Máté Csanád, Eötvös University 3 December 2013

Introduction

- Dilepton creation from hydro evolution
- Dilepton creation in the analyzed solution
- Quantitative analysis of our results
- Comparision to data
- Summary

- \blacktriangleright Hydrodynamic models \rightarrow relation between Initial, final state and EoS
- exact, 1+3D, relativistict solution
- time evolution : leptons and photons
- transverse momentum distribution and invariant mass distribution
- sources: QGP, hadron gas

Introduction Dilepton creation from hydro evolution Dilepton creation in the analyzed solution Quantitative analysis of

▶ rate of a process:

$$(A + B \to X) = n_A n_B \langle \sigma_{A+B \to X} v \rangle \tag{1}$$

dilepton source:

$$\frac{dN}{d^4x} = \int \frac{d^3\mathbf{k}_1}{(2\pi)^3} \frac{d^3\mathbf{k}_2}{(2\pi)^3} f(k_1) f(k_2) v_{rel}\sigma$$
(2)

Jüttner-distribution:

$$f(k) \propto \exp\left[-\frac{k_{\mu}u^{\mu}}{T(x)}
ight]$$
 (3)

▶ general result:

$$\frac{dN}{dyMdMd^2P_t} = \frac{g^2\pi}{16(2\pi)^5}M^2\left(1 - \frac{4m^2}{M^2}\right)\sigma(M^2)\int e^{-\frac{P^\mu u_{\mu(x)}}{T(x)}}d^4x \quad (4)$$

through a quasireal photon or a vector meson

Quark annihilation:

$$\sigma_q(M^2) = \frac{4\pi\alpha^2}{3N_c} \sum_{i=u,d,s} \frac{e_i^2}{e^2} \frac{1 + 2m_q^2/M^2}{M^2\sqrt{1 - 4m_q^2/M^2}}$$
(5)

Pion annihilation:

$$\sigma_{\pi}(M^2) = \frac{4\pi\alpha^2}{3} \frac{\left|F(M^2)\right|^2}{M^2} \sqrt{1 - \frac{4m_{\pi}^2}{M^2}}$$
(6)

Electromagnetic form factor of pions

$$\left|F_{\pi}(M^{2})\right|^{2} = \sum_{i=\rho,\rho',\rho''} \frac{N_{i}m_{i}^{4}}{\left(m_{i}^{2}-M^{2}\right)^{2}+m_{i}^{2}\Gamma_{i}^{2}}$$
(7)

- the solution:
 - 1+3 dimensional
 - relativistic
 - Hubble velocity field: $u^{\mu}(x) = x^{\mu}/\tau$
 - ellipsoidal symmetry

$$s = rac{r_x^2}{X(t)^2} + rac{r_y^2}{Y(t)^2} + rac{r_z^2}{Z(t)^2}$$

- \blacktriangleright X(t), Y (t), and Z(t) are time dependent scale parameters
- the temperature distribution:

$$T(\mathbf{x},\tau) = T_0 \left(\frac{\tau_0}{\tau}\right)^{3/\kappa} e^{bs/2}$$
(9)

(8)

Introduction Dilepton creation from hydro evolution Dilepton creation in the analyzed solution Quantitative analysis of

the final result is, if we neglect the azimuthal asymmetry and y = 0:

$$\frac{dN}{MdMP_t dP_t} = \frac{g^2}{16 (2\pi)^{5/2}} M^2 \left(1 - \frac{4m^2}{M^2}\right) \sigma(M^2) \sqrt{\rho_x \rho_y \rho_z} \times$$

$$\tau_0^4 \left(\frac{T_0}{\sqrt{M^2 + P_t^2}} \right)^{3/2} \kappa A^{\frac{3}{2} - \frac{4\kappa}{3}} \Gamma \left(\frac{4\kappa}{3} - \frac{3}{2}; A\zeta^{3/\kappa} \right) \Big|_{\zeta = t_i/t_0}^{\zeta = t_f/t_0}$$
(10)

$$\rho_{x} = \frac{\kappa}{\kappa - 3 - \kappa \frac{b}{\chi^{2}}} \tag{11}$$

$$A = \frac{M^2 - P_t^2 \left(1 + \frac{\rho_x + \rho_y}{4}\right)}{T_0 \sqrt{M^2 + P_t^2}}$$
(12)

 $t_0 = t_{fo} \ QGP:[t_{ini}, t_{fo}] \ hadron \ gas:[t_{fo}, t_{final}]$ Levente Krizsán, Máté Csanád, Eötvös University 3 December 2013

Model parameters based on comparison to hadron and photon production

Parameter	Notation	Value
Freeze out temperature	T_0	204 <i>MeV</i>
Freeze out proper time	$ au_0$	7.7 <i>fm/c</i>
Transvers extension over T gradient	$\dot{X}_{0}^{2}/b = \dot{Y}_{0}^{2}/b$	-0,36
Longitudinal extension over T gradient	\dot{Z}_0^2/b	-0,84

We analyze:

- κ (the EoS parameter)
- \blacktriangleright κ changes throughout the evolution, it is an average value
- the dilpeton creation interval (ζ)
- ▶ invariant mass is integrated out on P_t[100 2000 MeV]
- transverze momentum is taken at $M = 1000 \, MeV$

- All distributions depend strongly on the Equation of State
- \blacktriangleright the magnitude of M changes with κ
- κ is big \rightarrow the system spends more time near the freeze-out T
- if $\kappa > 5$ ightarrow hadron gas is not sensitive to κ

- ζ: the ratio of the time integration limits
- $\zeta < 1$ for QGP and $\zeta > 1$ for hadron gas
- extract informations (M. Csanád and I. Májer, Central Eur.J.Phys.10, 850 (2012))
 - $\kappa = 1/c_s^2 \to c_s = 0.36 \pm 0.02$
 - inital temperature $T_0 = 500 MeV$

- the parameters are from: M. Csanád and M. Vargyas, Eur. Phys. J. A44, 473 (2010)
- tuning the parameters :
 - RHIC: $T_{ini} = 270 MeV$
 - SPS: $T_{ini} = 200 MeV$ and $T_{final} = 130 MeV$
- \blacktriangleright small excess around $M=500 \, MeV
 ightarrow$ from the modification of η' mass
- \blacktriangleright at SPS ho dominate and at RHIC QGP
- ► excess at 800-1000 MeV at SPS ← vacuum parameters for vector mesons
- ▶ we did not take into account $\eta \eta'$ mesons and $\pi^0 \to \gamma e^+ e^-$ Levente Krizsán, Máté Csanád, Eötvös University 3 December 2013

- hadrons created at the freeze-out
- thermal photons and leptons constantly
- thermal dilepton production
- dependence on emission duration and equation of state
- compare to SPS and RHIC data

Introduction Dilepton creation from hydro evolution Dilepton creation in the analyzed solution Quantitative analysis of

Thank you for your attention.