High Power Proton LINACs PART 2

Sébastien BOUSSON

CNRS/IN2P3
Division Accélérateurs
IPN Orsay
bousson@ipno.in2p3.fr

Superconducting cavities

- « **CAVITY** » = Electromagnetic resonant cavity
 - ⇒ RF fields (electric and magnetic)
 - ⇒ To accelerate charged particles
- « SUPERCONDUCTING » : very low operating temperature (Liquid Helium)
 - ⇒ Superconducting state of the matter

Superconducting cavity (IPN Orsay) – 5 cells, 700 MHz, β =0,65

Frequency f

50 MHz to 3 GHz

<u>Size</u>

Proportional to 1/f

Temperature T

1,5 K to 4,5 K

Accelerated particle velocity

 β =v/c from 0,01 to 1

 $0 \ K \approx -273,15 \ ^{\circ}C$ $c \approx 2.998 \cdot 10^{8} \ \text{m/s}$

Why using superconducting cavities?

Intrinsic advantage of cold cavities

Almost no losses on the cavity wall (thanks to superconductivity)

 \Rightarrow ~100% of the injected RF power goes to the beam : very high efficiency !!!

Possibility to accelerate CW beams or beams with a high duty cycle (> 1 %) with high accelerating gradients (impossible with warm structures)

- Possibility to relax the constraints on the cavity RF design: choosing larger beam port aperture is possible \Rightarrow reduction of the activation hazard = security gain
- High potential for reliability and flexibility

(1) An electric field is created on the beam axis, and is available to accelerate charged particles

(2) The charged particle enter the: for an efficient acceleration, the particle should be synchronized with the RF wave

Synchronism condition:

The time for the particle to cross one cell should be $T_{RF}/2 \Leftrightarrow \frac{L_{cell}}{v} = \frac{1}{2f}$

The cell length should verify:

$$L_{\text{cell}} = \frac{\mathbf{v}}{2\mathbf{f}} = \frac{\beta \mathbf{c}}{2\mathbf{f}} \quad \text{or} \quad L_{\text{cell}} = \frac{\beta}{2\mathbf{f}}$$

The cell length should be adjusted to the particle velocity

Energy gain:

$$\Delta U = q \times \int_{t_{entrée}}^{t_{sortie}} \vec{E} \cdot \vec{v} \, dt \qquad \text{or} \qquad \Delta U = q \times E_{acc} \times L_{acc} \times cos(\phi)$$

 E_{acc} : accelerating field of the cavity (for a given particle velocity)

Lacc: cavity accelerating length

 ϕ : particule phase with respect to the RF wave

Ex : f = 700MHz ; 5-cell proton cavity β = 0,65 (L_{acc} =5×14cm); E_{acc} = 10MV/m ; φ = 0°

⇒ Energy gain : ∆U =

(3) <u>Beam acceleration</u>: particles should be bunched and synchronized with the electromagnetic wave

$$T_{beam} = n T_{RF}$$
 (n=1,2,3...)

« the cavity resonant frequency should be a multiple of the beam frequency that it wants to accelerate»

Ex: if f_{beam} =350 MHz (T_{beam} =2,86ns), then the cavity should resonate at : $f = 350 \text{ MHz} \ (T_{RF}$ =2,86ns), or $f = 700 \text{ MHz} \ (T_{RF}$ =1,43ns), or $f = 1050 \text{ MHz} \ (T_{RF}$ =0,95ns), etc.

<u>Material choice</u> \rightarrow niobium = compromise between :

- High Tc and Bc
- Low surface resistance (in order to minimize the losses)
- Quite good mechanical (easy to shape) and thermal properties

Operating temperature \rightarrow compromise between:

- Low surface resistance (means T not to high)
- Cooling system not too expensive (means T not too low)

Conclusion
$$f$$
 if $f < 500 \text{ MHz} \rightarrow T \sim 4.2 \text{ K (Liquid Helium)}$ if $f > 500 \text{ MHz} \rightarrow T \sim 2 \text{ K (Superfluid Helium)}$

Niobium characteristics

$$R_{\rm S}(\Omega) \approx 2 \times 10^{-4} \frac{1}{T} \left(\frac{f(GHz)}{1.5} \right)^2 e^{-17.67/T} + R_{\rm res}$$

Tc = 9.2 K

→ What achievable accelerating field?

When creating E_{acc} inside the cavity, surface electromagnetic fields are also created, with maximum values referred as B_{pk} et E_{pk}

In order to stay in the superconducting state, the niobium should not see a field $B_{pk} < Bc_{RF}$

The ratio B_{pk}/E_{acc} (and also E_{pk}/E_{acc}) only depends on the cavity geometrical shape

For elliptical cavities $\beta = 1$, we have

$$B_{pk}/E_{acc} \approx 4 \text{ mT} / (MV/m)$$

$$\Rightarrow$$
 @ T = 2 K, $\mathbf{E}_{\mathbf{accMAX}}$ = 220 mT / 4 = $\mathbf{\underline{55 \ MV/m}}$

This theoretical maximum Eacc varies with the cavity β :

- cavity
$$\beta = 0.65$$
, $B_{pk}/E_{acc} \approx 5 \text{ mT/(MV/m)}$

i.e.
$$\mathbf{E}_{\mathbf{accMAX}} = 44 \, \mathbf{MV/m} @ 2 \mathbf{K}$$

- cavity
$$\beta = 0.5$$
, $B_{pk}/E_{acc} \approx 6 \text{ mT/(MV/m)}$

i.e.
$$\mathbf{E}_{\mathbf{accMAX}} = 37 \text{ MV/m} @ 2K$$

Comparison between a "warm" and "cold" solution for a high intensity proton linac

Cavity: 700 MHz β=0,65 5 cells (protons 10mA)	SC cavity (2K)	« Warm » cavity (300K)
Surface resistance R _S (ideal)	$20 \text{ n}\Omega (3.2 \text{ n}\Omega)$	7 mΩ
Quality factor Q ₀ (ideal)	10 ¹⁰ (6.10 ¹⁰)	3.104
E _{acc} (theoretical)	10 MV/m (44 MV/m)	2 MV/m
Beam power P _{beam}	60 kW	12 kW
Dissipated power / cavity P _{cav}	16 W @ 2K	218 kW @ 300K
RF power / cavity $P_{RF} = P_{beam} + P_{cav}$	60 kW	230 kW
Power taken to the grid P _{AC}	125 kW	400 kW
Accelerator efficiency P _{beam} / P _{AC}	48 %	3 %
Number of cavity to gain 100 MeV	17 (about 30m)	85 (about 80m)

Various SC cavities for different particle velocity

β= 0,1

Structures inter-digitales (ATLAS, Argonne) 48 et 72 MHz - β = 0,009 à 0,037

Résonateurs quart d'onde (ALPI, Legnaro)

352 MHz - β = 0,15 et 0,35

Cavité TTF 1,3 GHz - $\beta = 1$

Cavités elliptiques

350 MHz à 3 GHz - β = 0,47 à 1

Cavité APT (Los Alamos) 700 MHz - $\beta = 0.64$

Résonateurs split-ring (ATLAS, Argonne) 97 et 145 MHz - β = 0,06 à 0,16

Cavité ré-entrante (Legnaro) 352 MHz - β ≥ 0,1

Cavités spoke (CNRS Orsay)

Résonateur demi-onde (Argonne) 355 MHz - $\beta = 0.12$

RFQs supra (Legnaro)

80 MHz - β = 0,009 à 0,035

SC cavity: fabrication

Niobium sheets 3 mm thick Welding by electron beams

Spoke cavity

 β = 0.35 f = 352.2 MHz

SC cavity: preparation and test

SC Cavity: cold tuning system (1)

Cold tuning system for spoke cavities

Cold tuning system for spoke cavities

Parameters for fast tuning

- Piezo tuner inserted within each "arm"
- Preloading of ~4 kN
- ➤ Displacement: ~3 µm @ 4 K
- ► 68% of the piezo displ. transferred to the cavity
- ➤ Tuning range: ~2 kHz max

SC Cavity: cold tuning system (2)

Plunger (innovative solution)

Mechanical deformation ("classic" solution)

Power couplers

Power couplers

Power couplers

▶ Outer conductor: Helium cooling

▶ Inner conductor: Water cooling

One example: Performances of a spoke cavity (IPN Orsay)

Eacc = 16.2 MV/m means Epeak=49.5 MV/m & Bpeak=134 mT

Another example: Performances of TESLA cavity

Spiral-2 cavities: all cavities results in VC (beta = 0.12)

