

Joint University Accelerator School 2014

Welcome to Bergoz Instrumentation

- Legal form: SAS
- ☐ Founded in 1981 by Julien Bergoz & Klaus Unser
- Paid-up capital 152 K€
- ☐ President : Julien Bergoz
- Number of employees: 11
- ☐ Turnover : 1.5 MEuros

Distribution network

Beam Instrumentation products

USA: GMW Associates, California

Japan: REPIC Corporation, Tokyo

India: Geebee International, New Delhi

Other countries: direct sales

Industrial products:

USA: GMW Associates, California

Japan: REPIC Corporation, Tokyo

India: Geebee International, New Delhi

Other countries: direct sales

The World of Synchrotron Radiation

More than 80 synchrotron light sources in the world Each of them uses our instruments

Our customers:

Neutron Spallation Sources

Most if not all spallation neutron sources worldwide use our beam instruments:

SNS, Oakridge TN, U.S.A.

SINQ, PSI Villigen Switzerland

PEFP, Taejon, Korea

CSNS, Chengdu, Sichuan, China

J-PARC, Tokai Mura, Japan

Our customers:

Laser-plasma wakefield accelerators

All laser-plasma use our Integrating Current Transformer and Beam Charge Monitor to measure the charge of their femtosecond-long bunches

Integrated Parametric Current Transformer (IPCT)

To measure:

- Low current at very-high voltage
- Return ground current, DC and AC
- Leakage current, DC and AC
- Sum of low currents
- Power tube grid current
- Electrostatic corona discharge
- Electrochemically-induced current
- Standby battery charging current

New Parametric Current Transformer

Less than 0.5 uA resolution
10 kHz bandwidth
20 mA-20A range

Based on DCCT operating principle invented at CERN by Klaus Unser in 1966 for the ISR, known as Flux-gate, second-harmonic detection, also Zero-flux™ transformer

Waveform monitoring

High Resolution version

Bandwidth up to 300 kHz Noise down to 1 μ Arms Lower cutoff (-3dB) < 3 Hz

AC Current Transformer

Wide Band version

Bandwidth up to 1 MHz

Noise down to 5 µArms

Lower cutoff (-3dB) < 3 Hz

Fast Current Transformer

Bandwidth up to 1.75 GHz 200 ps risetime Sensitivity up to 5V/A

In strumen tation

Integrating Current Transformer

Beam Charge Monitor

Measures single pulses with 1pC resolution and stored beam current with 10 nA res.

bergoz Instrumentation

In-flange.FCT, ICT, ACCT, NPCT

Simple installation Ceramic break integrated Vacuum down to 10⁻¹⁰ mbar

Beam Position Monitoring - BPM

Beam Position Monitoring - BPM

In strumen tation

Beam Position Monitor

Multiplexed Beam Position Monitor

MX-BPM

Multiplexed input BPM processor for Synchrotron close orbit measurement

1 um rms noise in 34-mm BPM pickups8-kHz beam position sampling ratePre-calibrated

No software: X and Y voltage outputs ready to use

Compact: 16 processors in 19" x 3U chassis

Simple to install, simple to use, reliable >3000 units used world-wide Most used BPM processor?

EPICS / TANGO microIOC integration by Cosylab

Log-ratio Beam Position Monitor

LR-BPM (100 MHz to 800 MHz) S-BPM (1,56 GHz, 2,856 GHz and 2,999 GHz)

Parallel, simultaneous processing of four BPM inputs for Linacs, Transfer lines

Measures single pass of bunch or macropulse, holds X and Y voltages until next bunch with ~100um resolution

X and Y output are voltages tracking beam lateral movement with 5 MHz bandwidth

Simple to install, simple to use, reliable Compact: 16 modules in 19" x 3U chassis >400 units used world-wide

EPICS / TANGO microIOC integration by Cosylab

Beam Loss Monitor (BLM)

Measure & localise beam losses.

PIN photodiodes mounted face to face detect charged particles

Insensitive to synchrotron radiation photon

Accelerator's Storage

Ring

Or

Booster

Section 19

Reads channel 12 + PWR

Reads channel 14 + PWR

MilcrolOC with RS485 ports

and 48V power outputs

Ethernel

CONTROL ROOM

BOOST

BECTOR 19

BEC

Up to 10 MHz counting

Vibrating Wire Monitor (VWM)

To measure beam transverse profile and HALO

Protons, ions, electrons, photons, neutrons

Thermal resolution: 1mK (for tungsten wire)

Dynamic range: 10⁶

Turbo-ICT and BCM-RF electronics

Low single-bunch charge measurement :

- < 5 pC @ 1% resolution « already measured at PSI with beam »
- 2 MHz repetition rate
- 66 dB dynamic range, from 0.1 pC to 200 pC
- could also measured current form CW beam (10 uArms @ 1% resolution)

Turbo-ICT with its front-end (Integrating current transformer)

BCM-RF electronics in chassis (Beam charge monitor)

Turbo-ICT principle

- Integration time is reduced by 25 compared to traditional ICT.
- Readout cores are coupled to a low noise amplifier.
- \Rightarrow Signal increases by 25 and noise by $\sqrt{25}$.
- Multiple cores (*) could be used to catch more signal from beam.
- *Patent INPI 12/00667 March 6, 2012

- Narrow-band processing. The wide-band signal from the amplifier is converted to a 180 MHz single tone resonance. Apex amplitude is proportional to the bunch charge.
- ⇒increases noise immunity.
- ⇒ decreases insertion losses in cable.
- ⇒ improves impedance matching.

BCM-RF electronics

Bench Testing in the Lab

- → Works well up to some 100 MHz.
- → At higher frequencies the impedance is not matched.
- → Hence, it gets harder and harder to properly know the current.
- → Above 1GHz resonance start to dominate and it is basically impossible to make accurate measurements.

The Goubau Line

Load Receiver Oscilloscope Coated Wire = "Wave Guide" Signal Beam Instrumentation, e.g. BPM, CT, ... Launcher Coax Cable Alternatively one can directly launch an EM wave.

Signal Generator

- → The DUT influences the wave less than in the spider.
- → Hence, power and impedance can be better determined.
- → Even at many GHz the fields behave well, i.e. weak resonances, no capacitive couplings,...

EM Field around a realistic Wire

- Solution of Telegraph Equation taking into account imperfections (Sommerfeld 1899, Goubau 1950).
- \rightarrow A fundamental TM mode outside a wire of radius $r_{\rm w}$ ($r > r_{\rm w}$):

radial electric field:

$$E_{r} = \underbrace{\frac{I e^{i(wt-hz)}}{2 \rho r_{w}}}_{1} \underbrace{\frac{h}{we}}_{1} \underbrace{\frac{H_{1}^{(1)}(gr)}{H_{1}^{(1)}(gr_{w})}}_{1}$$

like fields around beam of charged particles!

azimuthal magnetic field:

$$H_{j} = \frac{B_{j}}{m} = \underbrace{\left(\frac{I e^{i(wt-hz)}}{2 \rho r_{w}}\right)} \frac{H_{1}^{(1)}(gr)}{H_{1}^{(1)}(gr_{w})}$$

Hankel Functions, i.e. Bessel Functions

longitudinal electric field:

$$E_{z} = \frac{I e^{i(wt - hz - \rho/2)}}{2\rho r_{w}} \frac{g}{we} \frac{H_{0}^{(1)}(gr)}{H_{1}^{(1)}(gr_{w})}$$

Typical instrumentation for accelerator facilities Dercoz

Linac:

Waveform observation with FCT / ACCT Beam position monitoring with Log-ratio BPM Charge measurement with ICT and BCM / Turbo-ICT and BCM-RF

Linac-to-booster transfer line:

Waveform observation with FCT Beam position monitoring with Log-ratio BPM Charge measurement with ICT and BCM/ Turbo-ICT and BCM-RF

Typical instrumentation for synchrotron light source

On the Booster:

Stored beam current with NPCT, injection efficiency Beam position monitoring with MX-BPM or LR-BPM Beam Loss monitoring with BLMs

On the Booster-to-storage ring Transfer Line:

Charge extracted from the booster and injection into storage ring with ICT and BCM / Turbo-ICT and BCM-RF or NPCT Beam position monitoring with Log-ratio BPM

On the storage ring:

Stored beam current and lifetime measurement with NPCT Closed orbit position measurement with MX-BPM First turn position measurement with LR-BPM Beam loss monitoring with BLMs......

End of Presentation