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Edge focusing

¢ The theory in Lecture 1 is based on the hard-
edge model of a sector dipole.

Sector dipole
Orbit is
perpendicular to
magnet face

“* Modern lattices usually have rectangular
dipoles and in some cases dipoles with edges
inclined at a general angle. These cases excite
edge focusing.
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Edge focusing continued

“ The edge angles of a dipole are measured with
respect to the basic sector magnet. The sign
convention used here designates the edge angles as
positive when the field integral is reduced with
respect to the sector dipole on the outer side of the
bend (i.e. defocusing).
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“* For the special case of a rectangular dipole the
edge angles are equal to half the bending angle.

JUAS14_07- P.J. Bryant - Lecture 7
Filling some gaps - Slide3



Edge focusing continued

An edge angle is modelled by a ‘hard-edge’
field wedge set on the boundary of a sector
dipole. The field in the wedge is made equal
in magnitude to that in the dipole and the
wedge is arranged to add to the field integral
on one side of the central orbit and to
subtract on the other. Since the width of the
wedge is proportional to the distance from the
axis, the angular deviation, o, suffered by an
ion will be proportional to its distance from
the axis.

orbit

_Bztane ztané

(D
Bp p

z is the coordinate in the plane of bending that can be x or y.
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Edge focusing continued

)

L)

* The effect of the wedge is local and relatively
weak, so it is safe to regard the wedge as a thin
lens. The transfer matrix of this thin lens in the
plane of bending will be,

I O 1 0
s e e
Z'), 1 zZ'), o zZ'),

* The wedge will focus (positive f and negative k) in
the plane of bending when it adds to the field
integral on the outside of the bend and subtracts
from the field integral on the inside of the bend.
Thus focusing in the plane of bending corresponds
to a negative edge angle.

» This convention is independent of whether the
dipole is bending to the left or right or upwards or
downwards.

*+ However, an F-type quadrupole is universally
accepted as horizontally focusing and vertically
defocusing, which requires the upper signs for
horizontally bending dipoles and the lower signs
for vertically bending dipoles.

)

L)
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Edge focusing continued

“* So far, only the gradient seen in the plane of
bending has been evaluated.

¢ There must also be a gradient in the
orthogonal plane, but to demonstrate this
requires some extra explanation that invokes
the focusing action of the longitudinal field
components that arise above and below the
median plane.

“ Note this is a departure from the strict ‘hard-
edge’ model.

Plan view
e cords: XY —>Y
Fringe field v X
. . \\ \I,",
Slde view S €, Ie;d'ge angle

N | <>/Integration path
/,I N

Dipole

JUAS14_07- P.J. Bryant - Lecture 7
Filling some gaps - Slide6



Edge focusing continued

\/

** An integration loop is drawn along the beam path
with one side in the median plane and the return
at a height z above it. The orbit’s curvature has
been neglected. The vertical sides are either deep
inside the magnet and ‘see’ only a vertical field B,
or far outside and ‘see’ zero field. The integral is
zZero, since no current is passing through the loop.

§B-dl =B,z + [B, ds=0
Upper side of path
*» The beam crosses the magnet edge with angle €.
The fringe field component By, is resolved into B,
parallel to the path, and the B_, perpendicular to
the path. These two components are related by,

_[Bx ds = jBStaneds
Upper side of path Upper side of path
*» Combining these equations gives an angular Kick,
o, in the plane perpendicular to the main bending
that is independent of the fringe field shape, linear
in z and of opposite sign.

o=— ! IBds——

OIO O Fringefield IO 0

L)

L)

tan €

z (3)
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Edge focusing continued

“» Thus the ‘hard-edge’ wedge of field that
physically represents the edge focusing in the
bending plane can be replaced by a thin
quadrupole lens that represents the additional
focusing in both planes.

L)

* For accurate work, one more step can be
taken by using the dipole fringe-field
correction (Ref D.C. Carey, The optics of charged particle
beams, (Harwood Academic Publishers, 1987), ISBN 3-7186-

0350-0). This accounts for the shape of the
fringe field and the curve of the beam path
that was hitherto neglected. The effect can be
significant and is expressed as an effective
edge angle.

L)

* Less well-known and rarely used is a

quadrupole fringe-field correction (Ref P. Krejcik,
Nonlinear quadrupole end-field effects in the CERN

antiproton accumulators, 1987 Part. Accel. Conf.,
Washington D.C., March 16-19, (IEEE)).

L)
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Tilted elements

“* Any element can be rotated (tilted) about its
longitudinal axis by applying a rotation
matrix at the entry and a compensating
rotation at the exit.
0 —S O\ hh, hh, hv, hv, C O
C 0 —=S|hh, hh, hv, h,| 0 C
0O C O |vh, vh, vy, wvw,|=S O
S 0 C ) vhy, vh, v, w, A 0 =§ O

' ' '
Compensating rotation Basic element transfer matrix Rotation at entry
at exit

4)

S Ln © 0O
O ©

A © Lh» ©

where C = cos@, S = sinf and fis the angle of
rotation in the anticlockwise direction when
viewed in the beam direction.

** For a 6 X 6 matrix, the rotation becomes,

C 0 S 0,00
0 cC 0 S:O 0
- 0 C 010 O

I (9)
0 -S 0 C,0 0
_0__5__0_6]'1__0'
0 0 0 010 1

JUAS14_07- P.J. Bryant - Lecture 7
Filling some gaps - Slide9



Skew quadrupoles

“* Skew quadrupoles are normal quadrupoles
rotated by 1/4, so that C = S = 1/V2. These are
relatively common elements, so it is worth
multiplying (4) out,

1 1 1 1
B (hhn + Wn) B (hhu + le) B (hhn — VvV ) B (hhu — VYV, )
1 1 1 1
B (thI TV, ) B (hhzz TV ) 5 (thI TV, ) B (hhzz —Vy )
1 1 1 1
5 (hh — VYV ) B (hhu A%P: ) B (hhn + vy ) B (hhu + Vv, )
1 1 1 1
5 (hh —VVy ) B (hhzz YWy ) B (thI TV, ) B (hhzz T Vo )

which becomes

1 (cos @+ cosh @) L (sin @ + sinh @) 1 (cos @ —cosh @) - (sin ¢ —sinh @)
2 2¢ 2 2¢
2—(2 (sinh ¢ —sin @) % (cosgp+coshp) — 2—(2 (sin @ + sinh @) %(cos @—cosh @)

(6)
1 (cos @ —cosh @) - (sin ¢ —sinh @) 1 (cos @+ cosh @) - (sin @ + sinh @)
2 2¢ 2 2¢

- 2—(2 (sin @+ sinh @) %(cos @—cosh @)

2_¢€ (sinh ¢ —sin @) % (cos @+ cosh @)

where (¢ = /|t |/
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“*Solenoids with their main field aligned with
the central axis have long been used as focusing
devices at low beam energies where the ability to
focus in both planes over a short distance is
particularly useful.

“*At high beam energies, quadrupole focusing
schemes are more power-efficient, but solenoids
find a new application as particle physics
detectors.

**'To derive the transfer matrix of a solenoid, it
is necessary to consider separately the motion in
the central region and in the two ends.
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Solenoids continued

** Motion in the uniform axial field in the
central part of the solenoid.
Exit position

-——

B, axial field
into paper

\

Positive ion with =< e L
charge ¢ and axial ~ ~ EIltI‘ y
velocity p, position .

“» The angular divergences with respect to the
longitudinal axis at the entry position are,

X, = i £L cosg, and y'1=&sin90 (7)
Ps P,

and, at the exit position,

X, = &cos(ﬁo +6) and y' = ﬂsin(é’o +6) (8)
Ps P
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Solenoids continued

“* Substitute the entry position equations (7)
into the exit position equations (8) to get,

x cosf —sin@\ x’
T , )
y'), \sin@ cos@ \y')
<+ The particle positions at the entry and exit are

similarly derived from the geometry of the
circle diagram,

x, = x, —rsin @, +rsin(g, + )

y, =y, +rcos@,—rcos(d,+0)  (10)

< Expanding and substituting from (7) gives

Ps sin@ x, +r Ps (cos@—1) y!,
P, P,

X, =X +r

y, =y, +r Ps (1—c086’)x1'—|—r Ps sing V', (11)
Py Py
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Solenoids continued

< For a given transit time #, the precession angle
@ and the length of the solenoid / are related

by,

y p, v, rélt ro
D,V vt /

so that /
rfe =2 (13)
P, 0

**» Substitute (13) into (12) and combine with (9),
to get transfer matrix for the central region of
a solenoid,

/ 14

X 1 —sin @ 0 ——(1—cos@)| x
¢ 6 6 Y
_10 p cos @ 0 gsm@ (14)
y 0 —(l—cos@) 1 —sin @ y
| V) V) |
Y2 0 sin & 0] cos @ Y
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Solenoids continued

*+It has been convenient to use the angle of
precession fin this derivation, but in order to relate
to more basic quantities and to be in line with the
literature, we define

B 6
= =— (15)
Bp| ¢
*»*With (14) this yields,
ps I Lsnmr 0 —i(l—cost) X
p M M v
y 0 —(l—cosMr) 1 —sin M/ y
v M M '
Y2 0 sin M/ 0 cos M/ Y
Derivation of (15):

2

: : my
Rewrite the cyclotron motion Bev, =—= as p, =Ber

r

and substitute into (13) to get (15).

Tacitly (15) assumes that the transverse momentum is negligible with
respect to the axial component, so that we can equate the axial
momentum to total momentum and the magnetic rigidity 1Bl
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Solenoids continued

** Motion in the end fields.

* The end field of a solenoid is usually
concentrated in an iron end plate with a
circular hole for the beam to pass through.

Transverse Kick.

_Bu 1 Br ——ﬁr A7)
|Bo|  2|Bp] 2

o
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Solenoids continued

“» These kicks can be represented by thin lenses
with the transfer matrices,

’:’ Entry / 1 O O O\
0O 1 —% 0
2
0O O 1 0
% 0 0 1
\ 2 y,
* EXxit,
(1 0 0 0)
0 1 % 0
2
0 O 1 O
2o o0
. 2 )
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Solenoids continued

** The end matrices must now be multiplied
with the central matrix to get the final
transfer matrix of a solenoid.

cos’ @ —sin@cos@ —sin@cos¢ ——sin’ @
X 0 0 X
¥ ?sin (P COs @ cos’ @ zsin2 @  —singcosg |
Y sin ¢ cos @ £sin2 o cos’ @ £sin @coso | ¥
y'), v,

—Esin2 ' P ?
7 0 sin Q. cos @ 7 sin ¢cos @ cos” @
(20)

MY/
* where ¢ = B3

4

L)

)

and M/ = I B ds
\Bp\

relates the ‘hard-edge’ model to the real
world.
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Normalised phase space

“* From Lecture 4, Eqn (14),
2(s)= A" (s)cos(u(s) + B)
7'(s)=—AB"*|acos(u+ B)+sin(u+ B))

< The phase terms can be isolated and used to
define new co-ordinates Z(x) and Z (u) that
are known as normalised co-ordinates.

Z(u)=Acos(u+B) =z(s)p™" (21)
Z'(u)=—-Asin(u+B) =z(s)ap™" +2'(s)B"

< Real-space co-ordinates use lower case and
normalised co-ordinates upper case.

“* Real-space co-ordinates use s as the
independent variable and normalised co-
ordinates use the phase advance L.

“* Real-space coordinates show the phase-space
motion as an ellipse, while normalised
coordinates show a circle.
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Normalised phase space continued

*» The transformations between the two systems
are conveniently expressed in matrix form as:

P
dZ/du) \aB™> B \dz/ds

P e T
dz/ds) \—aB™ B \dZ/du

< Similarly, there is a normalised form of the
dispersion function (D, D ), which is also
frequently used,

aovsan)Las g,
_ (24)
dD/du) \ep™> pB"* \dD/ds

= (25)
dD/ds) \—aB™ B2 |\ dDy/du
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Beam steering

“* How to change the position and angle (Ay,
Ay') at a given point in a transfer line
using two upstream dipole kicks (9,, 0,).

Transfer matrix, A

4 A . ] Beam
Y Transfer matrix, B

trajectory

Ay

Point 1 Point 2 Observer

“* The system is linear, so the effect of each
Kkick at the ‘Observer’ can be calculated

and the effects added.
Ay’ \a21 a,, \ 0, J \b21 by, \ 9, J
Effect of 8;& 'Observer' Effect of 82Vat 'Observer'
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Beam steering continued

< which can be rewritten as,

(Ay,j _ (an by, j[é‘l j (26)
Ay ay by )\9,

where A indicates the changes in the
position and angle seen by the ‘Observer’.

Inverting (26) gives the kicks required for
the position and angle changes,

(51) _ 1 ( b,, _blzj[ Ay,j 27)
0, (b22a12 _b12a22) —ay, A, \Ay Observer

“* A similar reasoning can be used to
transform two independent orbit
measurements into a position and angle
measurement at a given point.
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Position & angle measurement

Transfer matrix, A

4 A : | Beam
Y | Transfer matrix, B

» trajectory
/
—— y ’
Y1 Y y

. = | LN

Monitor 1 Monitor 2 Given point

“* Transfers to given point from each monitor,

()’]_[an alzj[)ﬁ] ()’j_(bu bu]()’z]
| = | and | = |
y Ay Ay N\ YV, y by, by \ Y,

< Eliminate y," and y, '

a,, a ’ b, b ’
yl[ 1 21}2 y ) andyz[ 1 21}2 y )

a, dy R b, by,

“* Solve for y and y’
1

a,,b, —a,b,,

Y= ( )(Y1b12 - Y2a12)

Y = !
(

) (Y1b22 — )’2%2) (23)

a,,b,, —a,,b,,
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Half-wavelength bump

“* From Lecture 4, Eqn (14), we have,

2(s) = AB(s)"* cos|u(s)+ B]
2'(s) =—AL"?*|acos(i+ B)+sin(u + B)|

< If the first kick o,( =z7) is put at 1, = -1/2,

then B =0 and A = J,3,"*. At u=m/2, just
half a wavelength later, the excursion will
again be zero. At this point the oscillation
can be killed by a second kick ¢,, which is
equal and opposite to the trajectory slope at
this point, so that ¢, = - 7%, which gives the
conditions,

Imposed condition: 4, —u, ==z

Derived condition: 5 52 = 5 3.'"* (29)

L)

The bump height can be controlled at any
point by scaling the kicks, but the angle of
the trajectory is a feature of the lattice
geometry and cannot be controlled.
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3-magnet bump

*» Itis rare that magnets can be placed with a
phase separation of exactly 7. Even when
possible, this makes the lattice inflexible for
future developments.

L)

4

L)

¢+ It is therefore useful to know how to correct
the residual error of an imperfect 2-magnet
bump with a third dipole.

L)

L)

)

+ Using Lecture 4, Eqn (8), track forwards
from kick 1 to kick 2.

{Zz,f = (181:82 )1/2 sin (A:uz,l )51
2y = (181 /3, )1/2 [COS(AILlZ,l )_ &, Sin(A:uz,l )] o,

* Also using Lecture 4, Eqn (8) track
backwards from Kkick 3 to kick 2.

{Zz,b = (183182 )1/2 sin (_ ApL, )53
2y = (183 !, )1/2 [COS(_ AVZ )_ (_ «, )Sin(_ AV )] 0,

4

L)

L)
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3-magnet bump continued

“* The forward- and back-track amplitudes at 9,
must be identical and the difference in the
derivatives must be matched by the dipole
kick 9,, i.e.

Yor = Yo, and 0, = _)’;,b - y;,f
“* Some manipulation of the above equations

yields,

SA” _ 0B _ SBT 5,
Sin(Aﬂm) Sin(A/ulﬁ) Sin(A'u 2,1)

“» As with the 2-magnet, half-wavelength bump,
the excursion of the trajectory can be
controlled at any point by scaling the kicks,
but the angle of the trajectory is a feature of
the lattice geometry and cannot be controlled.

JUAS14_07- P.J. Bryant - Lecture 7
Filling some gaps - Slide26



4-magnet bump

< Often a local bump is required that controls
both the position and angle of the beam at
some particular position. This requires four
magnets with one pair upstream of the
control point and one pair downstream.

A Transfer matrix. A Transfer matrix, C
y 9 > >

Transfer matrix, D

Transfer matrix, B

Ay, Ay’

0,

81
n
Point 1 Point 2  Observer

<+ Calculate the kicks ¢, and 9, to achieve the
displacement Ay, Ay’ at the Observer position
by using the steering equation (27).

[51 j _ 1 [ b,, — bu]( Ay,] 27)
0, (b22a12 _b12a22) —ay A \AY Observer
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4-magnet bump continued

“* Eqn (27) can also be used to specify the
downstream Kkicks, but because the transfer
matrices and Kicks are defined in the beam
direction, the downstream Kkicks that close the
bump are found by back-tracking.

** Remember,

_ 1 [ ¢p —Cp Crpy —Cp :
C'=— = since ‘C‘zl
‘C‘ —Cy Oy —Cy O

D—lzi d22 _d12 _ d22 _d12 since ‘D‘zl
‘D‘ _d21 dn _d21 dn

¢ This gives,

- Ay’ Observer \_C21 ey \—9, ) L_d21 d, _53J

—~

Effect of 9, at 'Observer' Effect of 65 at 'Observer'

( Ay /j _ (_ ¢, —dy j(_ 54j 31)
- Ay Observer 11 dll B 53
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Summary

L)

» This introduction has covered many of the basic
concepts in accelerator physics: the ‘hard-edge’
model, the linear matrix representation of
elements, the Twiss formalism, synchronous RF
acceleration and lattice design.

L)

L)

* There are still many topics that we have not had
time to treat: analytical matching, numerical
matching, multi-turn injection, slow resonant
extraction, space charge, non-linear resonances,
synchrotron radiation, scattering, dynamic
aperture, stochastic and electron cooling, RFQs,
instabilities and so on.

¢ The CD-ROM (included with these lecture notes)
contains a full-featured lattice program for the
interactive design of rings and transfer lines.
There is a user guide, on-line help and
demonstration files.

L)

L)

L)

L)

* My best wishes for the rest of the course.

JUAS14_07- P.J. Bryant - Lecture 7
Filling some gaps - Slide29



