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Introduction

� So far we have:

� Introduced a curvilinear co-ordinate system that follows 
the reference or central orbit and described the 
transverse behaviour of the beam with respect to this 
reference orbit using the ‘hard-edge’ model. 

� Derived the transverse motion in the local curvilinear co-
ordinate system for magnetic and electrostatic elements 
and expressed the solutions in the form of transfer 
matrices.

� Used the matrices to track ions through a lattice. 

� Introduced the Twiss parameterisation, which is 
ubiquitous to lattice design.

� The longitudinal plane will be analysed in a similar 
way:

� The behaviour of the beam will be defined with reference 
to the same local curvilinear co-ordinates with the 
addition of a so-called synchronous ion.

� The longitudinal behaviour will be introduced into the 
transfer matrices of the basic lattice elements.

� RF structures, the Transit Time Factor and Phase 
Stability will be described. 

� There will not be time to cover the equivalent Twiss
parameterisation in the longitudinal plane nor the 
derivation of transfer matrices for cavities and RFQs.
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Terminolgy

� The beam will be described with reference to a 
synchronous ion that follows a particular space-time
trajectory.  The ‘space’ part is the central orbit of the 
transverse motion and the ‘time’ part is defined by 
initial conditions.

� When crossing a cavity, the synchronous ion receives a 
kick in momentum (∆∆∆∆s p).  Non-synchronous ions 
receive slightly different kicks (∆∆∆∆s p+ ∆∆∆∆p ).

� The motion of the non-synchronous ions is then 
expressed in terms of how much they lead or lag (∆∆∆∆s) 
the synchronous ion in their flight through the lattice 
and by how much they deviate from the synchronous 
ion in momentum (∆∆∆∆p/p).

� ∆∆∆∆s-∆∆∆∆p/p defines the longitudinal phase space.

� A large number of ions concentrated around a 
synchronous ion are referred to as bunch.

� Without longitudinal focusing, a bunch of ions will 
progressively spread out and be lost.

� A focusing region in longitudinal phase-space around 
the synchronous ion is known as an RF bucket. 
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Terminology continued

� A stationary RF bucket is one that does not alter the 
momentum of the synchronous ion (∆∆∆∆s p = 0),    but  
does modify the momenta of the non-synchronous ions 
(∆∆∆∆ p ≠≠≠≠ 0).

� An accelerating bucket applies a positive momentum 
kick to the synchronous ion (∆∆∆∆s p > 0).

� RF cavities are usually (but not always)  configured to 
bring non-synchronous ions closer to the synchronous 
ion.

� In transfer lines, this is called longitudinal focusing.

� In a ring, it is called phase stability.

NOTE:

‘∆∆∆∆s ’ refers to the synchronous ion.

‘∆∆∆∆’ refers to the difference with respect to the 
synchronous ion.

‘δδδδ’ refers to energy exchanges in electrostatic fields.

‘d’ and ‘∂∂∂∂’ used for mathematical differentials.

Normally, no distinctions are made in the literature.
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Leading and Lagging

� The variable ∆∆∆∆s has two components, given by 
differentiating s = vt.

� The first term is the geometric difference in path 
length, given by the velocity of the reference ion 
multiplied by the extra time taken by the given 
ion to traverse the element.  The second term is 
the distance due to the difference in velocity
between the given ion and the synchronous ion 
applied for the time needed for the reference ion 
to traverse the element.

� If the change in path length compensates the 
effect of the velocity difference 
(i.e. ∆∆∆∆spath length = - ∆∆∆∆svelocity), so that ∆∆∆∆s = 0, the 
transit time is the same for ions of all momenta
and the lattice is known as an isochronous lattice.
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∆∆∆∆s for drift spaces and similar elements

� Drift spaces, quadrupoles, multipoles and 
solenoids are considered to have the same 
geometric path length to first order for all 
momenta, so ∆∆∆∆spath length in (1) is zero in these 
cases.

� The second term in (1) is derived from the basic 
relativistic expression, p0=m0γβγβγβγβc by 
differentiation to give,

which gives,

so that,

� You will frequently see this term in 6 ×××× 6 transfer 
matrices (This is the easiest term to derive so 
watch for examination questions) .
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Longitudinal terms for transfer matrices of 

non-bending elements

� For drift spaces, quadrupoles (magnetic & 

electrostatic), skew quadrupoles, solenoids 

and similar ‘straight’ elements.
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The complete treatment of bends

� The complete treatment of bends to obtain all 

the matrix elements for the transfer matrix is 

above ‘introductory level’, especially for the 

case of electrostatic bends.

� However, this work is included in an Annex 

for completeness and future reference.
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Fields in RF devices

� RF devices require a little more understanding 
than the uniform blocks of field used in the ‘hard-
edge’ model.

� This section is devoted to accelerating structures of 
the standing-wave type with rotational symmetry 
excited by a TM010 mode.  In the TM010 mode, 
only the Er, Es and BΘΘΘΘ components are non-zero.

� Whether the standing-wave structure is called a 
gap, a cavity, or a tank with drift tubes depends 
on the external geometry, see next slide.

� The basic modules can be used individually or in 
periodic arrays.

� Arrays can operate in the so-called ππππ-mode, in 
which the fields of adjacent cells are ππππ out of 
phase, or the 2ππππ-mode for drift tubes in a tank 

when all the gaps are in phase.
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RF standing-wave structures

The beige colour shows the ‘useful’ RF field region.
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Alvarez linac (non-relativistic)

� Start with a series of cavities with ‘noses’ or drift 
tubes and excite all cavities in phase (2ππππ-mode).     
Note that the wall currents cancel.

� Since the wall currents cancel, remove the walls 
except for a support column for the drift tubes.

� Now adjust the drift tube lengths for the velocity.

� Note there are quadrupoles lodged inside the drift 
tubes for additional focusing.

� You have an Alvarez.

 

Beam 

axis 

r 

s 

θ 

Es 

 
Es 

 

Iwall Iwall 

Iwall Iwall 

 

Es Es 

 
Es 

 

rf 
βλ 

 Quadrupoles 

mounted inside drift tubes 



JUAS14_05- P.J. Bryant  - Lecture 5
Longitudinal plane - Slide12

Coupled-cavity linac (relativistic)

� The beam velocity is virtually that of light, 
so the cavities are identical.

� The cavities are coupled to be excited in the 
ππππ-mode.  This saves having an RF source for 
each cavity and synchronising them.
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All different, but all the same

� The field on the axis always has the form,

where ωωωω is the angular frequency of the standing wave 
and φφφφp is the RF phase at t = 0. 

� It is too complicated and unnecessary to follow the full 
derivation, but it can be shown that the linearised fields 
are,

where n is odd, the amplitudes An depend on the 
mechanical shape of the cavity, E0 is the average 
electric field across the ‘useful’ region at the time of 
peak field, L is the length of the active region, λλλλ is the 
free-space wavelength at the RF frequency ωωωω and φφφφ = 
ωωωωt+φφφφp.
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Qualitative action of a cavity

� Wall currents flow back and forth between the end 

plates that store the charge.  

� The current flow supports an azimuthal magnetic field.

� The charge accumulation on the end plates drives an 

electric field that acts on the beam.

� To relate the azimuthal magnetic field to the induced 

axial electric field use Faraday’s law.
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Qualitative action of the cavity fields

� The ‘noses’ shield the incoming ion from the axial field.

� As the ion enters the gap, the axial field rises with a 
cosine-like form.

� The radial focusing at the entry slightly exceeds the 
defocusing at the exit because the ion has a higher 
energy and is stiffer.
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Crossing a cavity

� The blue half waves show the axial cavity field as it 
changes sinusoidally with time.

� The brown curve shows the ion’s trajectory in space 
and time.

� The beige areas are defined by the position of the ion in 
space and time and the corresponding axial field.

� Beige area ‘C’ is the projection on the s-axis of the 
axial field ‘seen’ by the ion.  The area of ‘C’ is the 
energy given to the ion.

 

Axial field, Es 

Axial field, Es 

Time, t 

Time, t 

Distance, s 

Distance, s 

Area A is proportional 

to the energy given to 

an ion with infinite 

velocity. 

AB 

C  

Area C is the projection 

of area B onto the 

distance axis.  Area C is 

proportional to the 

energy given to an ion 

with finite velocity. 

Areas A, B and C are 

related to the energy 

received by an ion. 

Reduction in slope 

indicates increase in 

ion’s velocity. 

-L/2 L/2 

Max. field at t = 0 



JUAS14_05- P.J. Bryant  - Lecture 5
Longitudinal plane - Slide17

Transit time factor

� The exact solution for the transit of an ion in an RF 
cavity is complicated.

� The problem is partially avoided by defining something 
called the Transit Time Factor, T.

� T is defined as the ratio of the maximum integral of the 
axial electric field that can be ‘seen’ by a ion traversing 
an RF cavity with velocity vs(s) to the maximum 
integral that can be ‘seen’ by a particle traversing with 
infinite velocity.

� To obtain the maximum integral the ion must enter 
shortly before the peak field is reached and exit shortly 
after.

� The general energy gain, ∆∆∆∆sE, is then defined as,

where E0 is the average of the field distribution across 
the gap at peak field, L is the ‘active’ gap length, VRF is 
the peak voltage and φφφφp is the phase of the cavity field 
as the ion crosses the centre point (due to different 
origins you will also see cos φφφφp). 

� All the problems are now hidden in T, which can be 
estimated and a numerical calculation can be put off 
until really necessary.

)4(           sinsin pRFp0s φφ TqVLTqEE ==∆
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First approximation for T

� Let the field in the gap have an amplitude  E0 = VRF/L.  
Assume the field is constant with respect to distance s
and is zero in the drift tubes.  Assume the velocity is 
constant.

� The accelerating field is then, E(t)= (VRF/L) cos (ωωωωt).

� For an ion passing the centre of the gap at t = 0 and 
with an average velocity v0, its position is s = v0t and its 
energy gain will be,

� The maximum energy that can be extracted by an ion 

with infinite velocity is qVRF so that,
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Second approximation for T

� The field distribution with distance in the gap is close 
to a cosine [equation (3) 1st harmonic only], so we can 
improve our approximation, 

I leave you to do the mathematics,

� The ion crossing with infinite velocity receives,

� So finally,
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Transit time factor continued

� Consider an Alvarez structure operating in the 
2ππππ-mode and let the gap length be 0.4 of the cell 
length.

� The Transit Angle is,

� First approximation gives, T = 0.757

� Second approximation gives, T =  0.858

[Note that the first and second approximation have 
singular points at θθθθ = 0 and θθθθ = π, π, π, π, respectively]
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Linacs and Rings

� If you are interested in linacs, then the fields, 
Transit Time Factor etc. will be important to you. 

� If you are interested in rings, then it is likely that 
you will be able to take a very simplified view of 
the cavities.

� In linacs, the RF period will be a few times the 
gap transit time.

� In a ring, the RF period will be related to the 
revolution period by a factor called the harmonic 
number, h,

� In most cases, the time to cross the gap in a ring 
will be very small compared to the RF period and 
the ion will be fully relativistic, so that the Transit 
Time Factor will be close to unity.

� In this case, the energy gained by the beam will 
be,

[φφφφ s refers to the synchronous ion]

(7)         
period RF

period  Revolution
=h

)8(           sin sRFs φqVE =∆
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Synchronous RF acceleration

� From Lecture (2), equation (4) for bending in a dipole 

(omit sign),

so that,

� Re-writing for one turn,

� Let R be the average machine radius, then,

� Now, ∆∆∆∆E = ββββc∆∆∆∆p , so,

� but we already have for N cavities,

� Finally,

.
d

d

d

d
0

t

B
q

t

p
ρ=

Rev0Turn TBqp &ρ=∆

c

R
Bqp

β

π
ρ

2
0Turn
&=∆

BqRE &
0Turns 2 ρπ=∆

sRFTurns sinφNqVE =∆

(9)                2sin 0RF BRNV s
&πρφ =

Bqp
mv

Bqv 00

0

2
0

0 ρ
ρ

=⇒=



JUAS14_05- P.J. Bryant  - Lecture 5
Longitudinal plane - Slide23

RF acceleration continued

� The harmonic number, h sets the number of RF 

oscillations in one revolution.  There will be one stable 

RF bucket per RF oscillation, i.e. h buckets and 

correspondingly up to h bunches in the machine.

� The magnetic field ramp is the ‘driving’ parameter 

behind the RF programmes for fRF, VRF and φφφφs.

� Fast cycling machines have resonant power supplies.

� Slow cycling machines are ‘ramp and hold’
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Adiabatic damping

� A beam is a cluster of singular points in 6-D phase 

space (x, x´, y, y´, ∆∆∆∆s, ∆∆∆∆p/p).  It is assumed that the three 

component phase spaces (x, x´), (y, y´) and (∆∆∆∆s, ∆∆∆∆p/p) 

are independent, i.e. there are no initial correlations 

and the motion is uncoupled.  Most beams contain 

typically 108 to 1014 ions and it is natural to forget the 

point-like structure and refer to areas in phase space.

Geometric emittance,

where (z, z´) is any one of the component phase spaces. 

� It is well known that the phase-space area, or 

emittance, of a beam shrinks as it is accelerated, giving 

rise to what is known as adiabatic damping.  The 

physics of this effect can be illustrated by a simple 

vector diagram.
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Adiabatic damping continued

� It can be shown that the phase-space quantity that 
remains invariant with acceleration is the 

Normalised emittance, 

� The derivation of the transfer matrix for an RF cavity 
makes astute use of the above. 

1)  The cavity is treated as a thin lens, or a series of thin 
lenses.  Each lens has zero thickness, so it is flanked by 
drift spaces on either side that add up to the length of 
the active gap.

2)  Since a ‘thin’ lens has zero thickness the transverse 
positions of the ions (x, y) cannot change, so the full 
effect of the adiabatic damping is in the angles 
(remember this trick),

3)  The ∆∆∆∆s term is transferred through the thin lens 
unchanged.  

4)  The ∆∆∆∆p/p term is changed according to the  ion’s 
value of ∆∆∆∆s. 

5)  The drift spaces flanking the thin lens are treated in 
the normal way.

[The full derivation is rather complicated.]

(11)   zzn, εβγε =

( ) ( ) entry
1

exitentryexit zz ′=′ −βγβγ
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Transition energy

� The angular revolution frequency is,

which gives,

� From relativity,

� Define α α α α as the momentum compaction function.           
αααα depends only on the lattice,

� Substituting (B) and (C) into (A) gives, 

where the transition energy, γγγγtr is defined as

� For most accelerators, γγγγ = γγγγtr falls within the operating 
range.  This point is called transition.  Below transition               

is positive and above it is negative. 
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Phase stability

BELOW TRANSITION

This case is intuitive as ∆∆∆∆v dominates.

� Lag behind -get more energy - catch up.
� Get ahead  - get less energy - fall back.

V=V0sinωωωωRFt

‘Head’ (limit) 

of bucket
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Phase stability continued

ABOVE TRANSITION
This case is not intuitive as ∆∆∆∆C dominates.
� Lag behind –get less energy - catch up.
� Get ahead  - get more energy  - fall back.

‘Head’ (limit) 

of bucket

Note shift in position of 

RF wave from below to 

above transition.  This 

phase shift is needed to 

maintain the phase 

stability.
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Summary

� We defined the synchronous ion and 
introduced the idea of longitudinal phase 
space being described by the deviations (∆∆∆∆s, 
∆∆∆∆p/p) from the synchronous ion.

� We looked at the derivation of the ∆∆∆∆s lag/lead 
term for inclusion in transfer matrices of 
general lattice elements.

� We examined standing-wave RF devices and 
their fields, but only looked qualitatively at 
how they work.

� We defined the Transit Time Factor.

� We looked at acceleration, Transition Energy 
and phase stability in rings.

� We did not cover Twiss parameters in the 
longitudinal plane, nor did we tackle 
longitudinal matching.

� We hinted at how to calculate a complete 
transfer matrix for a cavity.
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∆∆∆∆s for dipoles

� In dipoles, the variation in bending with momentum 

makes the paths followed by ions of different momenta

different in length.

� To find this difference, divide the equilibrium orbit 

into elementary sections of length dllll = ρρρρ0 dθθθθ. To 1st-

order, the elementary length of a trajectory crossing 

this angular slice would be  dllll* = (ρρρρ0 + x) dθθθθ, where x is 

the radial position of the trajectory.  The full length of 

the trajectory is then found by integrating over θθθθ. 

� The change in length of each elementary section of 

trajectory due to its slope x' is 2nd-order and is 

neglected.
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∆∆∆∆s for dipoles continued

� Thus, the geometric path difference is given by,

� This reduces the problem to the integration of the 
expression for the radial position x(s) of the orbit in the 
plane of bending as derived in Lecture 2 and given in 
the Formula Book.

� The final expression is also given in the Formula Book.

� The detailed mathematics is not important, but 
remember the method, because you will have a hard 

time finding this explanation in the literature.

Equilibrium orbit

General orbit

Sector

dipole

x0
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dl dl*
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∆∆∆∆s for electrostatic bends

� As mentioned in Lecture 3, there is a fundamental 
difference between electric and magnetic bends.

� When traversing a magnetic field, the ion’s energy is 
rigorously constant, whereas in an electric field the 
ion can absorb or release energy to as it moves away 
from the central orbit. 

� The energy exchanged with an electric field  affects 
the basic equation for the lead or lag, by introducing 
a second contribution, δδδδv,  to the velocity.  Thus for 
electrostatic elements, equation (1) in the main lecture 
is more exactly written as,

Remember that ∆∆∆∆v arises from the momentum 
deviation ∆∆∆∆p/p of the incoming beam and that this 
term is constant. 

(3)      s vtvttv δ+∆+∆=∆
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∆∆∆∆s for electrostatic bends continued

� The first terms in (3) are calculated as before.

� Referring back to Lecture 3, the radial position and 
the velocity were related for local energy changes by,

which gives,

� Since δδδδv is changing, it is necessary to integrate,

� Equations (2) and (4) can be combined so that, 

Thus the final result is that of the magnetic bend 
multiplied by (2-ββββ2).

� Do not try to remember the detailed mathematics, 
but remember the method, because it is not well 
documented in the literature.  The matrices are given 
on the next slides for reference.
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Longitudinal terms for transfer 

matrices of horizontal bends

� For magnetic dipoles & electrostatic bends,

� For Kx > 0, for magnetic bends remove (2-ββββ2)
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Longitudinal terms continued

� For Kx < 0, for magnetic bends remove (2-β β β β 2)
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γ
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This looks complicated, but 

m16 = -m52  

m26 = -m51
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Longitudinal terms for matrices of 

vertical bends

� For magnetic dipoles & electrostatic bends,

� For Ky > 0, for magnetic bends remove (2-ββββ2)
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This looks 

complicated, but 

m36 = -m54  

m46 = -m53
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Longitudinal terms continued

� For Ky < 0, for magnetic bends remove (2-ββββ2)
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This looks complicated, but 

m36 = -m54  

m46 = -m53


