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Introduction

� So far we have:

� Introduced a local curvilinear co-ordinate system 
that follows the reference or central orbit.

� Described the behaviour of the beam with respect 
to the reference or central orbit using a ‘hard-
edge’ model for the lattice elements. 

� Derived the transverse motion equations in the 
local curvilinear co-ordinate system for both 
magnetic and electrostatic elements. 

� Expressed the solutions in terms of matrices.

� Used the matrices to track ions though a lattice. 

� Introduced the Twiss parameterisation which is 
ubiquitous to lattice design.

� Treated the longitudinal plane in the same way as 
the transverse plane. 

� We will now look at lattice designs:
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FODO cell

� The basic FODO cell is the best known and studied cell 
in lattice optics.

� The usual choices for phase advances are 45°, 60° and 
90°.  The 60° cell has the best all-round characteristics 
and is close to the minimum beam sizes obtained at 
~76°.

� Note an ‘F quadrupole’ is denoted by a box above the 
axis and a ‘D’ by a box below the axis.  Dipoles are 
denoted by a box extending above and below. 

� In the above example: ∆∆∆∆µµµµ=60°, kF = -0.1035, kD = 0.1035 
and Lcell = 20 m.
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FODO with dipoles

� The addition of dipoles changes the focusing slightly 

and introduces dispersion.

� In the above example: ∆∆∆∆µµµµx= = = = 60°,  ∆∆∆∆µµµµz=60°, kF = -0.0722, 

kD = 0.0915, θθθθH = 0.2618 rad and Lcell = 20 m.
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A regular ring using a FODO

� Using the same cell we can make a ring, BUT the drift 

spaces tend to be too short for extraction and injection.

� Note that dipoles sit around ββββz minimum to save power.

1 cell

F
F

D
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A ring using a split FODO

� Here the F and D quads are split into 2 units.  Between 

the ‘split’ quads, the betatron amplitude functions are 

quasi constant.

� Unlike the previous lattice, the dipoles sit around ββββy

max. because the requirements of a light source take 

precedence over the aperture and cost of the magnets.

ADONE
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A ring using a doublet

� Another way to make the space in a FODO more useful 

is to move the central quadrupole to one side.  This 

effectively creates pairs of quads, or doublets.

� Doublets have been very popular, but they do have 

large peaks and steep asymmetric slopes in the 

betatron amplitude functions. 

GSI medical ring design

F  D
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Controlling dispersion

� All the rings shown so far simply repeat a 

standard cell n times to reach 2ππππ of bending.

� This works for plain accelerators and often leads 

to an economical solution in which all 

quadrupoles for example are powered by a single 

power converter.

� In more advanced lattices, we would like to have 

regions with zero dispersion e.g. for RF cavities.  

This is done in small rings by closing the 

dispersion in bumps.  For large rings, see later.

� To close a dispersion bump one needs a phase 

advance of 180° to 360° in the plane of bending.

� This leads to solutions for rings with two, or three 

or four or more closed dispersion bumps 

separated by dispersion-free sections.

� Each closed bump forms a ‘corner’ and the ring 

looks ‘triangular’ or ‘square’ or ‘pentagonal’ and 

so on.
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Closing a dispersion bump

� Case 1. The half-wavelength bump

Possible where 2 short magnets can provide all of the 
required bending.

� Case 2. Uniformly distributed bending

When the bending is uniformly distributed, the dispersion D
oscillates about the equilibrium value of the matched cell.

� Case 3.  Hybrid

Often the lattice of a small ring will be a mixture of the two
limiting cases above.  

π

s

D

2π
s

D Matched cell value for 

D
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A ring using a triplet

� A triplet is another possible cell for a ring.  

� In this case, the large horizontal phase advance at the centre 

of the triplet is used to make 3 closed dispersion bumps.

� The ‘waist’ in the  vertical betatron amplitude in long 

straight sections is used for the dipoles.  This keeps the 

aperture requirements and cost down.

AUSTRON
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Characteristics of triplets

� Phase advance

� Thus regions of low ββββ give large phase advances.

sss d
1

2

1

21

s

s

∫=→ β
µ

βx is kept small for large 

phase advance for closing 

dispersion bump

Small βz in dipole saves 

money
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Light source lattice

� Chasman-Greene, double-bend achromat, high-

brightness lattice. The aim is to minimise Dx(s) and 

ββββx(s) in the dipoles.

� Each cell supports a closed dispersion bump.  There 

are 4 bumps making a ‘square’ ring.

NSLS
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Medical machine lattice

� The PIMMS medical machine lattice. 

� This ring has 2 dispersion bumps with 

distributed bending.  Compared to the earlier 

examples, this creates a ‘rounder’ ring.
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Large rings

� Large rings, such as the LHC, often have a basic 
FODO cell in the arcs. 

� The overall ring has an n-fold symmetry containing the 
n-arcs and n straight regions in which the physics 
experiments are mounted. 

� Between the arcs and the straight regions there is the 
so-called dispersion suppressor that brings the 
dispersion function to zero in the straight region in a 
controlled way.  There are several schemes for 
dispersion suppressors (see next slides).  

� The straight regions contain the injection and 
extraction and the RF cavities, which, in an electron 
machine like LEP, can occupy hundreds of metres.

� A dispersion-free straight region may also contains a 
low-ββββ insertion for physics.
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Missing-magnet suppressor

� Lattice functions of missing-magnet suppressor for a 

60° FODO cell.  Note how ββββx and ββββz hardly notice the 

suppression of Dx.

∆µx=60°

Arc

Zero dispersion 

straight section

2 missing dipoles
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Half-field suppressor

� Lattice functions of the half-field suppressor for a 60°

FODO cell.  The functions ββββx and ββββz are slightly 

perturbed by the suppression of Dx.

∆µx=60°

Arc

Zero dispersion 

straight section

Half-field dipoles
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Dispersion suppressors

� Missing-magnet suppressors for FODO arcs (Fquad. + Dipole 
+ Dquad. + Dipole):

� Half-field suppressors for FODO arcs
(N = i, no gap)

[Half field is useful in electron machines as it reduces the synchrotron 
radiation into the experimental region.]

Normal arc            Gap            End arc              Straight

(N-i) cells i cells

Suppressor N cells

(L/ρ)/2ρ)/2ρ)/2ρ)/245°04

(L/ρ)/ρ)/ρ)/ρ)/222260°03

(L/ρ)/2ρ)/2ρ)/2ρ)/290°02

End arc 

dipole θθθθ
∆µ∆µ∆µ∆µGapN=i

(L/ρ)/2ρ)/2ρ)/2ρ)/230°224

(L/ρ)/ρ)/ρ)/ρ)/√√√√222245°213

L/ρρρρ60°112

End arc 

dipole θθθθ
∆µ∆µ∆µ∆µiGapN
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Low-ββββ insertion

� Frequently it is necessary to make the beam size small in 
both planes.  This requires a so-called low-ββββ insertion.

� As an example, a doublet has been added after the dispersion 
suppressor on slide 16 to bring both betatron amplitudes 
down to 3 m. 

� This case requires some further numerical matching to 
reduce the peak and separate the doublet quadrupoles a little 
more.

Arc               Suppressor      Low-ββββ doublet   Low-ββββ point.
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Numerical matching

� The last example invoked numerical matching.

� Although we would like to believe that one can 

just type in what one wants, push the button and 

get a good result, it is better to have some 

strategies.

� Knowledge of some standard modules can be 

useful.

� The most basic module is the 1:1 module that has 

the very simple transfer matrix. 

� This module will return the input values of x and 

x' at the exit.  Thus any beam distribution will 

simply be transported unchanged to the exit.

� What does one have to specify in a numerical 

matching program in terms of ββββ and αααα to get this 

matrix?
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


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1:1 and 1:-1 modules

� A “1 : 1” module returns the entry beam co-ordinates 
at the exit and the “1:-1” returns the negative values. 

� Consider the general transfer matrix:

� Set ∆∆∆∆µµµµ = 2ππππ , ββββ2= ββββ1 and αααα2= αααα1 to create the 1:1 matrix.

� Set ∆∆∆∆µµµµ = ππππ , ββββ2= ββββ1 and αααα2= αααα1 to create the 1:-1 matrix.

� You can create these matrices in a lattice program with 
say 4 or 2 FODO cells with 90° phase advance.  The 
module you create would always be 1:1 or 1:-1 and 
would always return the input beam to the exit 
accordingly, whatever the input Twiss functions were. 

� For example, if you had made an arc with a closed 
dispersion bump and equal input and output Twiss
functions, then you could join two of these arcs with 1:1 
modules to provide long straight regions.
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Telescope modules

� Since phase space is conserved, it is clear that 
when the beam width increases the angular 
divergence will go down and vice versa.

� This can be seen in the telescopic modules 1:n
or 1:-n.  The matrices are of the form:

� Matrices of this type scale the excursion x by 
n and inversely scale the angular divergence 
x‘ by 1/n.  The moduli are still unity so phase 
space is conserved. 

� To obtain this type of module put ∆∆∆∆µµµµ = ππππ, or 
∆∆∆∆µµµµ =2 ππππ , ββββ2 =n ββββ1 and αααα2 = αααα1.
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Length scaling of a module

� From Lecture 4 equation (7), we had

� It was stated that this equation is rarely used.  Well, 
here is one case.  Let us suppose that you have created 
an ideal 1:1 or 1:-1 module, but it is too long.  How can 
you shorten it and still have the same transfer matrix?

� Rewrite equation (7) with scaling factors,

� With some re-arrangement,

� By inspection one sees that the equation is unchanged, 
if

Try, 

all ββββ functions and all lengths will be reduced by 20%, 
and all gradients by 36%, but phase advances and αααα-
functions are unchanged.  Thus the 1:1 or 1:-1 module 
has the same properties as before.
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Single-turn injection/extraction

� A conventional injection/extraction insertion,

� The ∆∆∆∆µµµµ is ideally 90°.

� If there is a quadrupole between the kicker and 

septum, then it is better to have a defocusing lens 

to benefit from the outward kick.

� It is better to have zero dispersion in order to 

have a narrow beam.

� It is also an advantage to have a large ββββx at the 

kicker.

� If the septum bends in the same plane as the 

kicker then a current-wall septum is needed.  If the 

bend is perpendicular to the first kick then a 

Lambertson septum is needed.
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Septa designs

� Current-wall septum

� Lambertson septum

B
Magnetic shielding

B

Magnetic 

shielding
Main beam
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H minus stripping

� This injection ‘cheats’ Liouville, but the beam still suffers
some emittance blowup from scattering in the stripping foil.

Inject H minus ions Unstripped H minus ions

Partially stripped H0

Majority of beam 

continues on 

central orbit

Weak dipoles

Main 

dipoles

AUSTRON
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Injection by radiation damping

� Displace central orbit with a fast bump 
towards the septum.

� Inject a pulse.

� Collapse bump before injected pulse returns 
to septum.

� Let synchrotron radiation damp newly 
injected pulse into the core of the beam.
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Medical gantry

� GSI iso-centric gantry.

� Rotates 360° around patient. 

� 13 m diameter.

� 25 m length.

� 600 t overall weight.
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Rotational optics

� A rotator module (1:1 horizontal, 1:-1 vertical) is 

mounted between the fixed beam line and the gantry.

� The rotator is turned by half the angle of the gantry. 

� The Twiss and dispersion functions are transferred 

exactly to the rotated coordinate system of the gantry.

α/2α/2α/2α/2

αααα

Rotator

Quadrupole lattice 
∆µp=3600 ∆µq=1800

Transfer line

Gantry

x

z
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u

v

x

x

αααα

α/2α/2α/2α/2

αααα

Rotator

Quadrupole lattice 
∆µp=3600 ∆µq=1800

Transfer line

Gantry

x

z
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q

u

v

x

x

αααα

Betatron amplitude functions [m] versus distance [m]

Dispersion functions [m] versus distance [m]
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Summary

� We have looked at the basic FODO cell, which is 
the best known and studied cell in lattice optics.

� We have also seen the split FODO, the doublet 
and the triplet cells.

� In order to make simple rings, we have 
concatenated many cells to give 2ππππ of bending.

� In order to control dispersion, we have looked at 
closed dispersion bumps for small and medium 
sized machines and dispersion suppressors for big 
machines.

� Numerical matching was mentioned with 
reference to building a low-ββββ insertion.

� Various lattice modules have been described and 
an analytic method for scaling modules was 
described.

� Various injection and extraction techniques have 
been described.

� Finally, the rather exotic topic of rotational optics 
has been briefly visited.


