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Overview of electro-magnetic technology as used in particle
accelerators considering normal-conducting, iron-dominated
electro-magnets (generally restricted to direct current situations)

Main goal is to:
e create a fundmental understanding in accelerator magnet technology

 provide a guide book with practical instructions how to start with the
design of a standard accelerator magnet

 focus on applied and practical design aspects using ‘real’ examples
* introduce finite element codes for practical magnet design

 present an outlook into as aspects related to magnet prodcution, testing
and measurements

Not covered:

— permanent magnet technology
— super-conducting technology
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* A bit of history...

e Why do we need magnets?

* Magnet technologies

* Basic principles and concepts

* Magnet types and applications

Archamps, 17.-21. February 2014

JUAS 2014




A it of nistory...

© Thomas Zickler, CERN

"\ | 1820: Hans Christian Oersted (1777-1851)

Leg finds that electric current affects a
compass needle

1820: Andre Marie Ampere (1775-1836) in
Paris finds that wires carrying current
produce forces on each other

1820: Michael Faraday (1791-1867) at
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— Introduction — Basic principles — Magnet types — Summary

Royal Society in London develops the
idea of electric fields and studies the
effect of currents on magnets and
magnets inducing electric currents

1825: British electrician, William Sturgeon
(1783-1850) invented the first
electromagnet

1860: James Clerk Maxwell (1831-1879), a
Scottish physicist and mathematician,
puts the theory of electromagnetism on
mathematical basis

Joseph Henry
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— Introduction — Basic principles — Magnet types — Summary

2

MVlagnetic units

Q

|IEEE defines the following units:
 Magnetic field:
— H (vector) [A/m]
— the magnetizing force produced by electric currents
e Electromotive force:
— e.m.f.or U [V or (kg m?)/(A s3)]
— here: voltage generated by a time varying magnetic field
e Magnetic flux density or magnetic induction:
— B (vector) [T or kg/(A s?)]
— the density of magnetic flux driven through a medium by the magnetic field

— Note: induction is frequently referred to as "Magnetic Field”
— H, Band urelates by: B = uH
* Permeability:
— H=HUpH,
— permeability of free space p,=4 107 [V s/A m]
— relative permeability u, (dimensionless): u_.. = 1; ..., > 1000 (not saturated)
* Magnetic flux:
— ¢ [Wb or (kg m?)/(A s?)]
— surface integral of the flux density component perpendicular trough a surface
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@m Maxwell

equations

In 1873, Maxwell published "Treatise on Electricity and Magnetism" in which he
summarized the discoveries of Coulomb, Oersted, Ampere, Faraday, et. al. in four

mathematical equations:
Gauss‘ law for electricity:

v.E.L
€9
Gauss’ law of flux conservation:

—_

V:-B=0
Faraday‘s law of induction:
_ 9B
VxE =——
ot
Ampere’s circuital law:
. OF
VxB = ILlOJ-I_MOEOE

E.cf:i
1% €y
B-dA=0
14
fE d§=—d£=—if8 dA
J dt dtd,

_ _ N _
bth-d§=£u0J-dA+E£yogoE-dA
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@ \/vr]\/ clo ywe need rnay P,

* |Interaction with the beam

f)

(D
L’l

T

o

© Thomas Zickler, CERN

— guide the beam to keep it on the orbit
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— focus and shape the beam

* Lorentz's force: F = q(E +Vx B)
— for relativistic particles this effect is equivalent if E=cB
— ifB=1Tthen E=3-108V/m

ebg MedAustron

o

L=
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@ rlow cdoes a rmagnet wori?

© Thomas Zickler, CERN

* Permanent magnets provide only constant magnetic fields
* Electro-magnets can provide adjustable magnetic fields
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Maxwell & Ampere:

VxH = j+@

>
............... . A ot

,An electrical current is surrounded by
a magnetic field”

\ \' \\\\\\\\

\\\\\\

HH”
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2

© Thomas Zickler, CERN
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Flux lines represent the magnetic field
Coil colors indicate the current direction
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@AV Magnetic circuilt

© Thomas Zickler, CERN
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Coils hold the electrical current
Iron holds the magnetic flux
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@ Excitation current in a dipole

Ampere’s law fﬁl~d7=NI and B=uH with u=uu,

© Thomas Zickler, CERN
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leads to N1=f§-df=f£-d7+ i-di= B + 2
u

gap luair yoke luiron luair luiron

assuming, that B is constant along the path

A
If the iron is not saturated: ——>>—
luair luiron
Bh
then: N](perpole) ~ 2—
0
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@ Reluctance and efriciency JUAS

Similar to Ohm’s law, one can define the ‘resistance’ of a magnetic
circuit, called ‘reluctance’, as:
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* 0: conductivity [S/m] U ] NI /
. R _ . E R M
* NI: magneto-motive force [A] = 7 = y i =
* ®: magnetic flux [Wb] £9 Ay, u
* [,; flux path length iniron [m] - L%
* A, iron cross section perpendicular to flux [m?] o Fluxdensity 7] L%
2 ————— ——Linear 8%
m Saturation [%] + “0" 7%
sheet steel = - —_
e Z15 6% X
Y _— cast steel £ / . s
/ g s &
g = =gy 2
Fluxdensity |/~ T @
(B) ;" o - 3%
f ,,// i cast iron 05 = 2%
{(,y‘ . o e m—— n 1%
e 0 n . 0%
- 0 500 1000 1500 2000 2500 3000
Field intensity (H) Excitation current[A]

* Increase of Babove 1.5 T iniron requires non-proportional increase of H
* Iron saturation (small u,...) leads to inefficiencies
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lron saturation

© Thomas Zickler, CERN
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Keep yoke reluctance small by providing sufficient
iron cross-section!
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& Naonetic §
X Magnetic flux

Flux in the yoke includes the gap flux and stray flux

0@

© Thomas Zickler, CERN
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Total flux in the return yoke:

P = [B:dA ~B,,,(w+2h)
A

gap mag
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& Steel nystere
A /

J

L/
)
"

© Thomas Zickler, CERN

Flux density B(H) as a function of the field strength is different,
when increasing and decreasing excitation
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P densy
Remanent field (Retentivity):
T H=0—>B=B_>0
/ Coercivity or coercive force:
Fedinenstyy B =0—=H=H_ <0

—_—
B B
A A

AT, y
y

(a) Hard material (b) Soft material
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© Thomas Zickler, CERN
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History — Introduction —

r -

Residual rield

— Magnet types — Summary

In a continuous ferro-magnetic core (transformer) the residual field is
determined by the remanent field B,

In @ magnet core (gap), the residual field is determined by the

coercivity H_

Assuming the coil current /=0:

1.8

1.2 -

0.6 -

0

-0.6

-1.2 1

— 17T
— 15T

12T

10T
—08T
—05T
—03T

H (A/m)

A Demagnetization cycle!

Hdl = (Hep-dl+ (Hedl=0
f fgp +y>!;e

gap

[
B — o o —
g

residual

B[T]

1.2

-0.3

-1.8

De-gaussing cycle

>

I\ A
20&\_}//400 \\fj?/ \ﬂﬂ{ it

1000
time [ms]
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@ (N'. ™ (N ~ ~)\ () —~ ~
X Stored energy & Inductance

Stored energy Eq [J, joules] in a magnet depends on (non-uniform) field
distribution in the gap, coils, and iron yoke:

b

1
E, =ff H-dB-dv andin case y, is linear: ES=5fH-B-dv
v'r v

© Thomas Zickler, CERN
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— difficult to calculate analytically = H
— usually done by numerical computations
— most of the energy is stored in the air gap
- 2E
Inductance L [H] of a magnet is givenby: L= 72

dl 2E. dI

— total voltage on a pulsed magnet: V..=RI[+ Lz =R[ + 125 j
t 5

— low inductance allows fast changes of magnetic field
— inductance depends on the magnetization in the iron
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e Circulating (eddy) currents are generated in electrical conducting materials
— creating a magnetic field opposing the original change in magnetic flux (Lenz’s law)
— opposing to the penetration of the magnetic field (skin effect)
— producing losses (Joule heating) A
— causing delays to reach stable field value HyorJ,
— damping high order modes (ripples)

H (z)=H, e”° -

* 64:skin depth [m]

3 N4 Ecdcly currents

= oD
g Faraday’s law: varying magnetic field induces an e.m.f. (voltage) U = N
:

1
\/W'ﬂo'ﬂr'f'a

Anplitude

wyY

)

e Magnetic circuits are made of insulated laminations to reduce eddy currents,
— decrease lamination thickness (d < 6/2)
— increase resistivity
— decrease permeability
— decrease frequency (0®/ot ) _—
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g@{ Losses

© Thomas Zickler, CERN

Losses in the coils:
Ohmic power loss P, per length unit [W/m] in a coil conductor

PQ IO ] 2

! A cond
* p: resistivity [Qm] (for copper: 1.86 - 108 Om @ 40°C)
d,,ng - CONductor cross-section [m?]
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Losses in the iron yoke:

Hysteresis losses: Power loss P,, per mass unit [W/kg] up to 1.5 T using
Steinmetz’s law P
“Hoop- B
m
* n: material depending coefficient: 0.01 <n < 0.1; n = 0.02 for silicon steel
* x:Steinmetz exponent: foriron x=1.6

* f: operation frequency [Hz]

Eddy current losses: Power loss P; per volume unit [W/m3] ifd,,, << 6

lam

lam

V 60

PE _jz_ZdZ fZBZ

* d,,: lamination thickness [m]
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& -onetic lengt JUA
X Magnetic lengtn

Coming from o=, B increases towards
the magnet center (stray flux)
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fB(Z)'dZ
Magnetic length: lmag ===

BO
AB/BO
‘Magnetic’ length > iron length | I
Approximation for a dipole: lmag =/ +2hk
Geometry specific constant k gets smaller in case of: distanceinbeam direction

* pole length < gap height

e saturation

* precise determination only by
measurements or numerical calculations
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© Thomas Zickler, CERN
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@ Dipoles

History — Introduction — Basic principles — — Summary

Purpose: bend or steer the particle beam

—
]

x-axis

Equation for normal (non-skew) ideal (infinite) poles: y= =r

(r = half gap height)

Magnetic flux density: B, = 0; B, = b, = const.

Applications: synchrotrons, transfer lines, spectrometry, beam scanning
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Dipole types

© Thomas Zickler, CERN

H-Shape O-Shape
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@ Quadrupoles

© Thomas Zickler, CERN

 Purpose: focusing the beam (horizontally focused beam is vertically
defocused)
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By

X-axis

* Equation for normal (non-skew) ideal (infinite) poles: 2xy= + r?
(r = aperture radius)
* Magnetic flux density: B,= b,y; B = b,x
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2

Quacdrupole types

© Thomas Zickler, CERN

Standard quadrupole Standard quadrupole  Collins or Figure-of-Eight
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P‘

Sextupoles

© Thomas Zickler, CERN
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X-axis

* Equation for normal (non-skew) ideal (infinite) poles: 3x%y - y3 = = r3
(r = aperture radius)

* Magnetic flux density: B,= byxy; B = b;(x*- y*)/3
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@Au Octupoles

* Purpose: ‘Landau’ damping

© Thomas Zickler, CERN
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* Equation for normal (non-skew) ideal poles: 4(x3y — xy3) = = r
(r = aperture radius)
* Magnetic flux density: B,= b,(3x%y —y3)/6; B = b,(x* - 3xy?)/6
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@ Skew guacdrunola
KW ClUaCUrupPole

* Purpose: coupling horizontal and vertical betatron oscillations

© Thomas Zickler, CERN
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Rotation by mt/2n

 Beam that has horizontal displacement (but no vertical) is deflected
vertically

« Beam that has vertical displacement (but no horizontal) is deflected
horizontally
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2

Cornoined runction rnagnets

Q

© Thomas Zickler, CERN

Functions generated by pole shape (sum a scalar potentials):
Amplitudes cannot be varied independently
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Dipole and quadrupole: PS main magnet (PFW, Fo8...)
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2

Cormpined Tunction rmagnets

Q

© Thomas Zickler, CERN

Functions generated by individual coils:
Amplitudes can be varied independently
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2

Solenoicls

© Thomas Zickler, CERN

 Weak focusing, non-linear elements
e Main field component in z-direction, focusing by end fields
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e Usually only used in experiments or low-energy beam lines
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JUAS
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Snecial magne

© Thomas Zickler, CERN

For beam injection and extraction
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* Septa
* Kicker magnets
* Bumper magnets

Scanning magnets
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Overview

2

© Thomas Zickler, CERN

Pole shape

Field distribution

Pole equation
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History — Introduction — Basic principles — Magnet types —

Magnets are needed to guide and shape particle beams

Coils carry the electrical current, the iron yoke carries the
magnets flux

Steel properties have a significant influence on the magnet
performance

In case of time-varying fields, eddy currents can appear

Different magnet types providing different functions




