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Recap: Dispersion function and orbit

x(s) = xa (s) + xp (s)

x(s) = C(s)xo—&-S(s)x(’)—&-D(s)%

(2)=06 3)(2)5(5),

We can rewrite the solution in matrix form:

X c S D X
X/ — C/ SI Dl X/
2p/p ) 0 0 1 NN

Dispersion in a FODO cell with length L, beding angle 6, and phase advance p:

In matrix form

+_ LO (li%sinﬁ)

2
4sin 5

n

2/24



Recap: FODO cell and its optical functions
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Dispersion suppressor

In an arc, the FODO dispersion is non-zero everywhere. However, in straight sections, we often
want to have n =7’ = 0. = for instance to keep small the beam size at the interaction point.

We can “match” between these two conditions with a “dispersion suppressor”: a non-periodic set
of magnets that transforms FODO 7, ' to zero

i A 4

Ly /2~ ey/2 o 6:/2 02 -

Consider two FODO cells with length L and different total bend angles: 61, 62: we want to have
P )= (8) o ()= (0)
( 77/ entrance 0 77/ exit 0
Note:

» the two cells have the same quadrupole strengths, so that they have also the same 3, and
u (phase advance per cell)

» remember that & = 0 at both ends, and that, if the incoming beam comes from a FODO
cell with the same length L, phase advance p, and with a total bending angle 6, then the
initial dispersion is

0 = Mfopo

2
n;ODO ~ % (1 + B—LF) 6, in thin-lens approximation
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Dispersion suppressor (cont.)
Transport for the dispersion:

0 cC S D 70

0 = c s D 0

1 0 0 1 1
suppressor

In 2 x 2 form reads

which has solution

(0)=-(& 5)(%)

The transfer matrix for the suppressor is

Msuppressor - MFODO 2 MFODO 1

For each FODO cell, Mropo = M1/2F . Mdipole - Mp - Mdipo|e . M1/2|:, in thin-lens
approximation:

L2 / L L
1-3m L(1+ﬁ) §<1+§)‘9j
M L= L L L2 L L2 .
FODO j —m<1—ﬁ 1-3m (1_§_W)9
1

swhere j = 1,2 (1=first cell, 2=second cell)



Dispersion suppressor (cont.)

If we do the math, we find

D(s) = §(1+8Lf> [(3-%)91%2}
D (s) = (178%7 3;2) [(1 4Lf2)91+92}

From lecture 3, we remember that the phase advance p for a FODO cell, in terms of the
length L and the focal length f, is

sin 5] = 47
2 4f

Thus, one can write the solution as a function of the phase advance p, and of

0 =01 + 05:
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Dispersion suppressor (summary)
Dispersion suppressor, a non-periodic set of magnets that transforms FODO 7, 1’ to zero

‘J’ ‘ ! ‘ |
0,/2 [ 0, /2
D F 2/ D 2/ ;F

91/2 01/2

One possibility: two FODO cells with length L, phase advance u, and different total

1
L
( 4sin2%>

1
0> —
2 4sin® &

bend angles: 601, 6-:
01

An interesting solution is for © = 60°: in this case
» then 1 = 0, and 6> = 0 = we just leave out two dipole magnets in the first FODO
cell insertion
» this is called the “missing-magnet” scheme
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Optics functions in the dispersion suppressor, with 1 = 60°

} Arc } Dispersion suppressor 4{& Straight section %

This is the "missing-magnet" scheme.
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The drift space

The most problematic insertion: the drift space !

Let's see what happens to the Twiss parameters «, 3, and ~ if we stop focusing
for a while

B c? —-25C S2 B

@ =| —-CC' SC"+S'C -S§ o

ol . C/2 —_25'C! 5/2 v o

B(s) = Bo — 2aps + 7os°

c S 1 s
Mdrift:(cl 5/>=<0 1> = CY(S)ZOéo—’YOS
7(s) =0

for a drift:
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Let's study the location of the waist: « =0

» the location of the point of smallest beam size, 3*

beam waist: o= 0

PR

Beal WaiSt:
a(S) =Qap —YoS = 0
( ) 0 0 v

Beam size at that point

7 (1) =0 ()
a(l)=0 TWETE T B0

This beta, at | = hyaist, is also called “beta star’™:
= 6* = Bmin

It’s here that the interaction point (IP) is located.



Drift space with L = /st : The low [S-insertion

We can assume we have a symmetry point at a distance lyajst:

5(5)250—2%5-1-7052, ata(s)=0 —p"=—

On each side of the symmetry point

l !
e By ;
we have
52
B9 =6+ 5

= [ grows quadratically with s.

A drift space at the interaction point, with length L = lyaist, is called “low-8 insertion™:

Dispersion

‘//(s::ﬁ;essor \
o] low B | low p FEofmofofo]

Collision po/m
g y/jx y
a= ()
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Phase advance in a low-£ insertion

We have:

2
6@2W+%

The phase advance across the straight section is:

Loya:

waist d LW ;

Au:/ 7552:2arctan7"’*St
—Lwaist ﬁ* + F /8

which is close to Ap = 7 for Lyaist > 8*.

In other words: the tune will increase by half an integer!
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Achromatic insertions

There exist insertions (arcs) that don't introduce dispersion: they are called
achromatic arcs
» In principle, dispersion can be suppressed by one focusing quadrupole and one
bending magnet
» With one focusing quad in between two dipoles, one can get achromat
condition: In between two bends, we call it arc section. Outside the arc
section, we can match dispersion to zero. This is called “Double Bend
Achromat” (DBA) structure
» We need quads outside the arc section to match the betatron functions,
tunes, etc.
» Similarly, one can design “Triple Bend Achromat” (TBA), “"Quadruple Bend
Achromat” (QBA), and “Multi Bend Achromat” (MBA or nBA) structure
» For FODO cells structure, dispersion suppression section at both ends of the
standard cells (see previous slides)
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The Double Bend Achromat lattice (DBA)

Consider a simple DBA cell with a single quadrupole in the middle (plus external
quadrupoles for matching).

Mpea = Mg - Murist - Majzk - Major -Mariee - Mi
——_— ——

Mg

In thin-lens approximation, the dispersion matching condition:

Dcenter 1 0 0 1 L O 1 L L8)2 0
0 = — 1 0 0 1 0 0 1 0 0
1 0 1 0 0 1 0 0 1 1

where f is the focal length of the quad, 6 and L are the bend angle and the length of the
dipole, and L; is the distance between the dipole and the centre of the quad.

1 1 1
f- — 5 <L1 + EI—) ' Dcenter — (Ll + §L> 9
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DBA optical functions
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Triple Bend Achromat (TBA)
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QBA, OBA, and nBA
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Last steps: 6-D phase space

In the real life the state vector is six-dimensional:
.
(x X'y y z Ap/p)

and the transfer matrix is typically

X R]_l R12 0 0 0 R16 X
X' Roi R O 0 0 R x'
y o 0 0 Rz Rza O 0 y
y, - 0 0 R43 R44 0 0 y'
z Rs1 Rs2 O 0 1 Rss z
o o 0o o 0 0 1 2e
s 0

in bold the elements that would couple the x — y motion.
Nota bene: this matrix can still represent only linear elements.

» if we want to consider high-order elements: e.g. sextupoles, octupoles, etc. = we
need computer simulations ! “particle tracking” or “maps” (MAD-X, for instance)

» because such elements introduce non-linear motion, which is too difficult to treat
analytically

20/24



Non-linear dynamics

+ Q=0.2516

* linear motion near center
(circles)

* More and more square
* Non-linear tuneshift
w 0

e Islands

i * Limit of stability

05

* Dynamic Aperture

R T R R R «  Crucial if strong quads and
' chromaticity correction in s.r.
light sources

Tppr | cos(27Q)  sin(27Q) T, * many non-linearities in LHC
T\ —sin(27Q)  cos(27Q) v+ 22 due to s.c. magnet and finite

'Iyil +1 “n n .
manufacturing tolerances
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Particle tracking with dynamic aperture

Dynamic aperture: is a method used to calculate the amplitude threshold of stable

motion of particles. Numerical simulations of particle tracking aims at determining the
“dynamic aperture”.

Dynamic aperture for hadrons
> in the case of protons or heavy ion accelerators, (or synchrotrons, or storage rings),
there is minimal radiation, and hence the dynamics is symplectic

» for long term stability, a tiny dynamical diffusion can lead an initially stable orbit
slowly into an unstable region

» this makes the dynamic aperture problem particularly challenging: One may need to
consider the stability over billions of turns

For the case of electrons

> in bending magnetic fields, the electrons radiate which causes a damping effect.

> this means that one typically only cares about stability over few (“thousands) of
turns

22/24



Dynamic Aperture and tracking simulations
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a beam of four particles in a storage ring
composed by only linear elements
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The end!
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Best of luck to you students with your
career in accelerator physics!
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