Introduction to Transverse Beam Dynamics

Lecture 5: Insertions / Tracking / Beam stability

Andrea Latina (CERN)

JUAS 2014

20th January 2014

Recap: Dispersion function and orbit

$$\begin{cases} x(s) = x_{\beta}(s) + x_{D}(s) \\ x(s) = C(s)x_{0} + S(s)x'_{0} + D(s)\frac{\Delta p}{p} \end{cases}$$

In matrix form

$$\left(\begin{array}{c} x\\ x' \end{array}\right)_s = \left(\begin{array}{cc} C & S\\ C' & S' \end{array}\right) \left(\begin{array}{c} x\\ x' \end{array}\right)_0 + \frac{\Delta p}{p} \left(\begin{array}{c} D\\ D' \end{array}\right)_0$$

We can rewrite the solution in matrix form:

$$\begin{pmatrix} x \\ x' \\ \Delta p/p \end{pmatrix}_{s} = \begin{pmatrix} C & S & D \\ C' & S' & D' \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} x \\ x' \\ \Delta p/p \end{pmatrix}_{0}$$

Dispersion in a FODO cell with length L, beding angle θ , and phase advance μ :

$$\eta^{\pm} = \frac{L\,\theta\,\left(1\pm\frac{1}{2}\sin\frac{\mu}{2}\right)}{4\sin^2\frac{\mu}{2}}$$

Recap: FODO cell and its optical functions

Insertions

Dispersion suppressor

In an arc, the FODO dispersion is non-zero everywhere. However, in straight sections, we often want to have $\eta=\eta'=0$. \Rightarrow for instance to keep small the beam size at the interaction point.

We can "match" between these two conditions with a "dispersion suppressor": a non-periodic set of magnets that transforms FODO $\eta,\,\eta'$ to zero

Consider two FODO cells with length L and different total bend angles: θ_1 , θ_2 : we want to have

$$\left(\begin{array}{c} \eta \\ \eta' \end{array} \right)_{\text{entrance}} = \left(\begin{array}{c} \eta_0 \\ 0 \end{array} \right) \quad \text{to} \quad \left(\begin{array}{c} \eta \\ \eta' \end{array} \right)_{\text{exit}} = \left(\begin{array}{c} 0 \\ 0 \end{array} \right)$$

Note:

- the two cells have the same quadrupole strengths, so that they have also the same β , and μ (phase advance per cell)
- remember that $\alpha=0$ at both ends, and that, if the incoming beam comes from a FODO cell with the same length L, phase advance μ , and with a total bending angle θ , then the initial dispersion is

$$\eta_0 = \eta_{\mathsf{FODO}}^+$$

$$\eta^+_{\mathrm{FODO}} pprox rac{4f^2}{L} \left(1 + rac{L}{8f}
ight) heta,$$
 in thin-lens approximation

Dispersion suppressor (cont.)

Transport for the dispersion:

$$\left(\begin{array}{c} 0 \\ 0 \\ 1 \end{array}\right) = \left(\begin{array}{ccc} C & S & D \\ C' & S' & D' \\ 0 & 0 & 1 \end{array}\right)_{suppressor} \left(\begin{array}{c} \eta_0 \\ 0 \\ 1 \end{array}\right)$$

In 2×2 form reads

$$\left(\begin{array}{c} 0 \\ 0 \end{array}\right) = \left(\begin{array}{cc} C & S \\ C' & S' \end{array}\right) \left(\begin{array}{c} \eta_0 \\ 0 \end{array}\right) + \left(\begin{array}{c} D \\ D' \end{array}\right)$$

which has solution

$$\left(\begin{array}{c} D \\ D' \end{array}\right) = - \left(\begin{array}{cc} C & S \\ C' & S' \end{array}\right) \left(\begin{array}{c} \eta_0 \\ 0 \end{array}\right)$$

The transfer matrix for the suppressor is

$$M_{\text{suppressor}} = M_{\text{FODO 2}} \cdot M_{\text{FODO 1}}$$

For each FODO cell, $M_{\text{FODO}} = M_{\text{1/2F}} \cdot M_{\text{dipole}} \cdot M_{\text{D}} \cdot M_{\text{dipole}} \cdot M_{\text{1/2F}}$, in thin-lens approximation:

$$M_{FODO\,j} = \left(\begin{array}{ccc} 1 - \frac{L^2}{8f^2} & L\left(1 + \frac{l}{4f}\right) & \frac{L}{2}\left(1 + \frac{L}{8f}\right)\theta_j \\ -\frac{L}{4f^2}\left(1 - \frac{L}{4f}\right) & 1 - \frac{L^2}{8f^2} & \left(1 - \frac{L}{8f} - \frac{L^2}{32f^2}\right)\theta_j \\ 0 & 0 & 1 \end{array} \right)$$

where j = 1, 2 (1=first cell, 2=second cell)

Dispersion suppressor (cont.)

If we do the math, we find

$$\begin{cases} D(s) = \frac{L}{2} \left(1 + \frac{L}{8f} \right) \left[\left(3 - \frac{L^2}{4f^2} \right) \theta_1 + \theta_2 \right] \\ D'(s) = \left(1 - \frac{L}{8f} - \frac{L^2}{32f^2} \right) \left[\left(1 - \frac{L^2}{4f^2} \right) \theta_1 + \theta_2 \right] \end{cases}$$

From lecture 3, we remember that the phase advance μ for a FODO cell, in terms of the length L and the focal length f, is

$$\left|\sin\frac{\mu}{2}\right| = \frac{L}{4f}$$

Thus, one can write the solution as a function of the phase advance μ , and of $\theta = \theta_1 + \theta_2$:

$$\begin{cases} \theta_1 = \left(1 - \frac{1}{4\sin^2\frac{\mu}{2}}\right)\theta \\ \theta_2 = \frac{1}{4\sin^2\frac{\mu}{2}}\theta \end{cases}$$

Dispersion suppressor (summary)

Dispersion suppressor, a non-periodic set of magnets that transforms FODO $\eta,\,\eta'$ to zero:

One possibility: two FODO cells with length L, phase advance μ , and different total bend angles: θ_1 , θ_2 :

$$\left\{ \begin{array}{l} \theta_1 = \left(1 - \frac{1}{4\sin^2\frac{\mu}{2}}\right)\theta \\ \theta_2 = \frac{1}{4\sin^2\frac{\mu}{2}}\theta \end{array} \right.$$

An interesting solution is for $\mu = 60^{\circ}$: in this case

- ▶ then $\theta_1 = 0$, and $\theta_2 = \theta \Rightarrow$ we just leave out two dipole magnets in the first FODO cell insertion
- ▶ this is called the "missing-magnet" scheme

Optics functions in the dispersion suppressor, with $\mu=60^\circ$

This is the "missing-magnet" scheme.

Intermezzo

Often the insertions are larger than few meters...

The drift space

The most problematic insertion: the drift space !

Let's see what happens to the Twiss parameters α , β , and γ if we stop focusing for a while

$$\left(\begin{array}{c} \beta \\ \alpha \\ \gamma \end{array} \right)_s = \left(\begin{array}{ccc} C^2 & -2SC & S^2 \\ -CC' & SC' + S'C & -SS' \\ C'^2 & -2S'C' & S'^2 \end{array} \right) \left(\begin{array}{c} \beta \\ \alpha \\ \gamma \end{array} \right)_0$$

for a drift:

$$M_{\text{drift}} = \begin{pmatrix} C & S \\ C' & S' \end{pmatrix} = \begin{pmatrix} 1 & s \\ 0 & 1 \end{pmatrix} \Rightarrow \begin{cases} \beta(s) = \beta_0 - 2\alpha_0 s + \gamma_0 s^2 \\ \alpha(s) = \alpha_0 - \gamma_0 s \\ \gamma(s) = \gamma_0 \end{cases}$$

Let's study the location of the waist: $\alpha = 0$

• the location of the point of smallest beam size, β^*

Beam waist:

$$lpha\left(s
ight)=lpha_{0}-\gamma_{0}s=0\qquad
ightarrow\qquad s=rac{lpha_{0}}{\gamma_{0}}=\mathit{l}_{\mathsf{waist}}$$

Beam size at that point

This beta, at $I = I_{waist}$, is also called "beta star":

$$\Rightarrow \beta^* = \beta_{\min}$$

12/24 here that the interaction point (IP) is located.

Drift space with $L = I_{\text{waist}}$: The low β -insertion

We can assume we have a symmetry point at a distance l_{waist} :

$$\beta(s) = \beta_0 - 2\alpha_0 s + \gamma_0 s^2$$
, at $\alpha(s) = 0$ $\rightarrow \beta^* = \frac{1}{\gamma_0}$

On each side of the symmetry point

we have

$$\beta(s) = \beta^* + \frac{s^2}{\beta^*}$$

 $\Rightarrow \beta$ grows quadratically with s.

A drift space at the interaction point, with length $L = I_{waist}$, is called "low- β insertion":

Phase advance in a low- β insertion

We have:

$$\beta(s) = \beta^* + \frac{s^2}{\beta^*}$$

The phase advance across the straight section is:

$$\Delta \mu = \int_{-L_{\text{waist}}}^{L_{\text{waist}}} \frac{\mathrm{d}s}{\beta^{\star} + \frac{s^2}{\beta^{\star}}} = 2 \arctan \frac{L_{\text{waist}}}{\beta^{\star}}$$

which is close to $\Delta \mu = \pi$ for $L_{\text{waist}} \gg \beta^{\star}$.

In other words: the tune will increase by half an integer!

Achromatic insertions

There exist insertions (arcs) that don't introduce dispersion: they are called achromatic arcs

- ▶ In principle, dispersion can be suppressed by one focusing quadrupole and one bending magnet
- ▶ With one focusing quad in between two dipoles, one can get achromat condition: In between two bends, we call it arc section. Outside the arc section, we can match dispersion to zero. This is called "Double Bend Achromat" (DBA) structure
- ▶ We need quads outside the arc section to match the betatron functions, tunes, etc.
- ► Similarly, one can design "Triple Bend Achromat" (TBA), "Quadruple Bend Achromat" (QBA), and "Multi Bend Achromat" (MBA or nBA) structure
- ► For FODO cells structure, dispersion suppression section at both ends of the standard cells (see previous slides)

The Double Bend Achromat lattice (DBA)

Consider a simple DBA cell with a single quadrupole in the middle (plus external quadrupoles for matching).

In thin-lens approximation, the dispersion matching condition:

$$\left(\begin{array}{c} D_{\mathsf{center}} \\ 0 \\ 1 \end{array}\right) = \left(\begin{array}{ccc} 1 & 0 & 0 \\ -\frac{1}{2f} & 1 & 0 \\ 0 & 0 & 1 \end{array}\right) \left(\begin{array}{ccc} 1 & L_1 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{array}\right) \left(\begin{array}{ccc} 1 & L & L\theta/2 \\ 0 & 1 & \theta \\ 0 & 0 & 1 \end{array}\right) \left(\begin{array}{ccc} 0 \\ 0 \\ 1 \end{array}\right)$$

where f is the focal length of the quad, θ and L are the bend angle and the length of the dipole, and L_1 is the distance between the dipole and the centre of the quad.

$$f = \frac{1}{2} \left(L_1 + \frac{1}{2} L \right); \qquad D_{\text{center}} = \left(L_1 + \frac{1}{2} L \right) \theta$$

DBA optical functions

Triple Bend Achromat (TBA)

QBA, OBA, and nBA

Last steps: 6-D phase space

In the real life the state vector is six-dimensional:

$$(x \quad x' \quad y \quad y' \quad z \quad \Delta p/p)^T$$

and the transfer matrix is typically

$$\begin{pmatrix} x \\ x' \\ y \\ y' \\ z \\ \frac{\Delta p}{p} \end{pmatrix}_{s} = \begin{pmatrix} R_{11} & R_{12} & \mathbf{0} & \mathbf{0} & 0 & R_{16} \\ R_{21} & R_{22} & \mathbf{0} & \mathbf{0} & 0 & R_{26} \\ \mathbf{0} & \mathbf{0} & R_{33} & R_{34} & 0 & 0 \\ \mathbf{0} & \mathbf{0} & R_{43} & R_{44} & 0 & 0 \\ R_{51} & R_{52} & 0 & 0 & 1 & R_{56} \\ 0 & 0 & 0 & 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} x \\ x' \\ y \\ y' \\ z \\ \frac{\Delta p}{p} \end{pmatrix}_{0}$$

in bold the elements that would couple the x-y motion.

Nota bene: this matrix can still represent only linear elements.

- ▶ if we want to consider high-order elements: e.g. sextupoles, octupoles, etc. ⇒ we need computer simulations! "particle tracking" or "maps" (MAD-X, for instance)
- because such elements introduce non-linear motion, which is too difficult to treat analytically

Non-linear dynamics

$$\begin{pmatrix} x_{n+1} \\ x'_{n+1} \end{pmatrix} = \begin{pmatrix} \cos(2\pi Q) & \sin(2\pi Q) \\ -\sin(2\pi Q) & \cos(2\pi Q) \end{pmatrix} \begin{pmatrix} x_n \\ x'_n + x_n^2 \end{pmatrix} \bullet$$

- Q=0.2516
- linear motion near center (circles)
- More and more square
- Non-linear tuneshift
- Islands
- Limit of stability
- Dynamic Aperture
- Crucial if strong quads and chromaticity correction in s.r. light sources
- many non-linearities in LHC due to s.c. magnet and finite manufacturing tolerances

Particle tracking with dynamic aperture

Dynamic aperture: is a method used to calculate the amplitude threshold of stable motion of particles. Numerical simulations of particle tracking aims at determining the "dynamic aperture".

Dynamic aperture for hadrons

- in the case of protons or heavy ion accelerators, (or synchrotrons, or storage rings), there is minimal radiation, and hence the dynamics is symplectic
- for long term stability, a tiny dynamical diffusion can lead an initially stable orbit slowly into an unstable region
- ▶ this makes the dynamic aperture problem particularly challenging: One may need to consider the stability over billions of turns

For the case of electrons

- ▶ in bending magnetic fields, the electrons radiate which causes a damping effect.
- this means that one typically only cares about stability over few (~thousands) of turns

Dynamic Aperture and tracking simulations

a beam of four particles in a storage ring composed by only linear elements

a beam of four particles in a storage ring where there is a strong sextupole: it's a catastrophe!!!

The end!

I'd like to thank: Javier Resta-Lopez, Reyes Alemany, Guido Sterbini, and Dario Pellegrini

for their help.

Best of luck to you students with your career in accelerator physics!