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Reminder of lecture 1

Equation of motion:
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Transformation through a system of lattice elements

One can compute the solution of a system of elements, by multiplying the
matrices of each single element:
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In each accelerator element the particle trajectory corresponds to the movement
of a harmonic oscillator.

x(s)

...typical values are:

3/27



Orbit and Tune

Tune: the number of oscillations per turn.

Example:
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Relevant for beam stability studies is : the non-integer part

u]
o)
I
i
it




Envelope
Question: what will happen, if the particle performs a second turn ?

> ... or a third one or ... 10%° turns ...
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The Hill's equation

In 19th century George William Hill, one of the greatest master of celestial
mechanics of his time, studied the differential equation for “motions with periodic
focusing properties”: the “Hill's equation”

x"(s)+ K(s)x(s)=0

with:
> a restoring force # const
> K (s) depends on the position s
> K(s+ L) = K(s) periodic function, where L is the “lattice period”

We expect a solution in the form of a quasi harmonic oscillation: amplitude and
phase will depend on the position s in the ring.
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The beta function

General solution of Hill's equation'

= Vey/B(s)cos (v (s) + ¢) (1)

€, ¢ =integration constants determined by initial condltlons
B (s) is a periodic function given by the focusing properties of the lattice

Bs+L)=5(s)

Inserting Eq. (1) in the equation of motion, we get (Floquet's theorem) the

quadrupoles

following result
°d
S
Y (s) =
©= 1, 5
1 (s) is the “phase advance” of the oscillation between the points 0 and s in the
lattice. For one complete revolution, v (s) is the number of oscillations per turn,

the “tune”

1 ds
=% P50

€ is the “emittance” also known as Courant—Snyder invariant:
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Beam emittance and phase-space ellipse
General solution of the Hill's equation

x(s) = ey/B(s)cos(¢(s)+ ¢)
X' (s) Z—J\%{Q(S)COS( ¥ (s) + &) +sin (¥ (s) + 0)}

-

From Eq. (1) we get

1
als)= 15 (s)
cos (1 (s) + ¢) = <) 2

B (s)
Insert into Eq. (2) and solve for €

e =7 (s)x(s)* +2a(s) x (s) X' (s) + B (s) X' (s)*

> ¢ is a constant of the motion, independent of s
> it is a parametric representation of an ellipse in the xx’ space

» the shape and the orientation of the ellipse are given by «, 3, and v = these are

the Twiss parameters

VeVB (s) S (s) = L)

(1)
()
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Beam emittance and phase-space ellipse

e=7(s)x(s)" +2a(s)x(s) X' (s) + B (s) X (s)°

Liouville: in an ideal storage
ring, if there is no beam energy
change, the area of the ellipse in
the phase space x—x’ is constant

A =m-€=const

J7
const ]
x(s) g N C/ / N x

€ beam emittance = area of ellipse. It is an intrinsic beam parameter and cannot
be changed by the focal properties.
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Particle tracking in a storage ring

Computation of x and x’ for each linear el-
ement, according to matrix formalism. We

plot x and x’ as a function of s
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Particle tracking and the beam ellipse

For each turn x, x” at a given position s; and plot in the phase-space diagram
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Plane: x — x’
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The emittance and the phase-space ellipse
Given the particle trajectory:

x(s) = Vey/B(s)cos (¢ (s) + ¢)

» the max. amplitude is:
X(s) =+e€B
» the corresponding angle, in % (s), can be found putting % (s) = v/¢f3 in Eq.
e =7(s)x(s)* +2a(s)x(s)x' (s) + B(s)x (s)°

and solving for x’:

€= -ef+2ar\/ef-x' + Bx?
— 2’:—041/% —

» A large S-function corresponds to a large beam size and a small beam
divergence

Important remarks:

> In the middle of a quadrupole, 8 is maximum, and « =0 = x’ =0

12 /27



The emittance and the phase-space ellipse
Let's repeat the remarks:

> A large S-function corresponds to a large beam size and a small beam divergence
» In the middle of a quadrupole, 3 is maximum, and =0 = x' =0

V4 ¥, ¥ ¥
g%y EEE;V ;S% ¥ %V
a b [ d
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Emittance of an ensemble of particles

x(5) = Ve [B(5) - cos(¥(s) + ) 3(s) =eJB(s)

Gauss Particle N-e 7,
X)= N4

Distribtion: (x) = 2o,

single particle trajectories, N = 10 ! per bunch

vertical: ov gy =24.376 -pm

0
02 15

LHC: © =, 5%107°m*180m = 0.3 mm aperture requirements: r ;> 10 * o

14 /27



Emittance of an ensemble of particles

Example: LHC 002 — -
beam parameters in the arc
’ [ =1
B(x)=180m 23
e~5%10" rad-m (< 10) | |
O =,/¢ff =03 mm 084 |
1 1
0.1 0 0.1
X
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The beam matrix

To track a beam of particles, let's assume with Gaussian distribution, the beam ellipse can be

characterised by a “beam matrix" X

The equation of an ellipse can be written in ma-
trix form:

XTyx =1 O =5 AT
wnx—( 3 AT

X/

==(om m)=(& &)

CENTROID
Y is the covariance matrix of the particles distri-
bution
» The area of the ellipse is
A=7VdetL = me

with slope r21 = 021/+/011022.

Xmax = V07 = VBe
xaw= Vo (12) =%

> ¢ is again the beam emittance. For an ensamble of particles, ¢ is the area covered by the
particles in the transverse x-x’ phase-space, and it is preserved due to the Liouville's

theorem.
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The transfer matrix M

As we have already seen, a general solution of the Hill's equation is:

x(s) = \/66(5 cos (¢ (s) + ¢)

VEE [a )cos (¢ (s) + ) + sin (¢ (s) + ¢)]

Let's remember some trigonometric formulae:

sin(a =+ b) =sina cos b + cos a sin b,
cos(a+t b)=cosacosbFsinasinb, ...

then,

x(s) cosw( ) cos ¢ — sin (s) sin @)

x'(s) = 1/ [a (s) (cos ) (s) cos ¢ —sintp (s) sin @) +

+siny (s) cos ¢ + cos e (s) sin @]
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At the starting point, s(0) = sp, we put ¢ (0) = 0. Therefore we have

X0

€Bo

. __i QX0
sin¢ = ﬁ( 5"*%)

If we replace this in the formulz, we obtain:

cosp =

x(s) = Z—:{cosw,jLaosinw,}xicH»{\/,@,Bosinw,}i

ﬁ {(cvo — as) cos s — (1 + aoars)sin s} xo + 4/ % {cos s — as sin w,}i

The linear map follows easily,

( x ) ( x > o ( ﬁ(cos¢g+a05|n¢s) \/BsPBo sin s
x ). x" ) -

(00— aus) cos #)sﬁ—’(;:aoas)sl" Vs /Ho 2 (cos 1y — cve sin ) >

» We can compute the single particle trajectories between two locations in the
ring, if we know the «, 8, and v at these positions!

X

‘(5=
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Periodic lattices

The transfer matrix for a particle trajectory

\/ 22 (cos s + ag sin 1)) V/BBosin
(cvo—ars) cos w,ﬁ.(ﬁl:raoa,)sm s /% (COS 1/}5 — agsin 7/)5)

simplifies considerably if we consider one complete turn...

w M= cos P + agsinPp Bssinp
ﬁ m - —Yssintp cos Py — g sin g
R

M =

= where 1, is the phase advance per period

= jg’ T
T e G

3 = 8 Remember: the tune is the phase advance in
% units of 27:
1 ds
Q= = ¥
2r J B(s) 27
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Stability criterion

We have seen that if our particles perform one complete turn, the transport map

IS

M — ( cos; + assiny Bssiny )

—Yssinyy cos Py — assinyy

10 . s s
_coswl_< 01 >—|—sm¢L( _O‘% _ﬁas )
———— —

| J

What happens if we consider N turns?
MmN = (Icos . + Jsin ¢L)N = lcos Ny + Jsin Ny
= The motion for N turns remains bounded if the elements of MV remain

bounded:
P €R |cosy| < 1 [trace (M)| < 2
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Stability criterion ... demonstrated

Matrix for 1 turn:

M:coswL<é (1))+sinw,_< 70[7 fa)
————— ~—_———

1 J
Matrix for 2 turns:

M? = (Icostp1 + Jsin 1) (I cos bz + Jsin 1)
=1?cos 11 cos 2 + 1J cos 11 sin Yz + Jl'sin 1 cos o + ) sin 11 sin Y2

which brings us to
M? = I cos (1)1 + 1b2) + Jsin (11 + o) = lcos (2¢) + Jsin (2¢))
= MM = Icos (Nv) + Jsin (N)
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The transformation for «, 3, and
Consider two positions in the storage ring: sg, s

x x M = MgF - Mp - Mgend - Mp - Mqp -
< , > =M < , > with c s 4 s’
X X M = ’ ’ M = ’

s So ( C S ) ( e

Since the Liouville theorem holds, € = const:

€ = Bx? + 20xx" 4+ x2

€ = Boxi? + 2a0x0%4 + Yox3
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We express xp and xj as a function of x and x’:
xo = S'x — Sx'
X — X 0 — -
! =M ! 4 ‘ / ’ ’
X X =—-Cx+ Cx
so s Xo

Inserting into ¢ we obtain:

€ = Bx? + 20xx’ + yx2
€ = Bo (fC'x + CX')2 + 2ap (5/X — SX') (7CIX + Cx') + v (S/X — Sx’)2

We need to sort by x and x’:

B(s) = C*Bo — 25Cap + S*o
a(s) =—CC'Bo+ (SC' + S'C) a0 — S50
v(s) = C?Bo —25'C'ao + 50
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The transformation for «, 3, and ~

In matrix notation:

B C? —25C s? B
e’ =| -CC" SsC'+S'C -S§ a
o C/2 _25/C/ 5/2 vy

1. this expression is important, and useful

2. given the twiss parameters «, 3, v at any point in the lattice we can
transform them and compute their values at any other point in the ring

3. the transfer matrix is given by the focusing properties of the lattice elements,
the elements of M are just those that we used to compute single particle
trajectories

4. go back to point 1.
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Beam matrix and Twiss parameters
The beam matrix is the covariance matrix of the particle distribution
s (oun o2 _ (x3)y (o)
T \om o2 )\ {(Xx) (x?)
this matrix can be also expressed in terms of Twiss parameters a, 3, v and €
(6B )N (B —a
= ( (x'x) <x’2> “l —a ¥

We can transport the beam matrix, or the twiss parameters, from 0 to s by two equivalent ways:

> Twiss 3 X 3 transport matrix

8 c? —25C s? 8
e = -Ccc’ sc'+Ss'c -Sss o
~ . C-/2 _28'c’! 5/2 v 0

> Using the transfer matrix M = ( CC/ g, ) :
0—s

Ss=MXoMT
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Summary

equation of motion:

general solution of the

Hill's equation:
phase advance & tune:

emittance:

transfer matrix s; — sa:

matrix for 1 turn:

stability criterion:

x"" (s) + K (s)x(s) =0,

K=1/p—k

x(s) = VeB (s)cos (¥ (s) + &)

Y12 =[2 5 ’ Q=59

€= 7(s)x(s)* +2a(s) x (s) x' (s) + B (s) X' (5)*

B(s)

cosw. + g sin 1)
M = (ag— a,)cosw,f(lﬁﬁzoa,)llnws
BsBo
( cos P + assin P
M =
—Aesin L

[trace (M)] < 2

Bssinyr

cos L — g sin L

)

V/BsPBo sin s

52 (cos s —

Qg sin 1)

)
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