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Reminder of lecture 1

Equation of motion: Solution of trajectory
equations:

x ′′ + Kx = 0 K = 1/ρ2 − k ... horiz. plane
K = k ... vert. plane
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Transformation through a system of lattice elements
One can compute the solution of a system of elements, by multiplying the
matrices of each single element:

Mtotal = MQF ·MD ·MBend ·MD ·MQD · · · ·(
x
x ′

)
s2

= Ms1→s2 ·Ms0→s1 ·
(

x
x ′

)
s0

In each accelerator element the particle trajectory corresponds to the movement
of a harmonic oscillator.

...typical values are:

x ≈ mm

x ′ ≤ mrad
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Orbit and Tune

Tune: the number of oscillations per turn.

Example:

64.31

59.32

Relevant for beam stability studies is : the non-integer part
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Envelope
Question: what will happen, if the particle performs a second turn ?

I ... or a third one or ... 1010 turns ...
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The Hill’s equation

In 19th century George William Hill, one of the greatest master of celestial
mechanics of his time, studied the differential equation for “motions with periodic
focusing properties”: the “Hill‘s equation”

x ′′ (s) + K (s) x (s) = 0

with:
I a restoring force 6= const
I K (s) depends on the position s
I K (s + L) = K (s) periodic function, where L is the “lattice period”

We expect a solution in the form of a quasi harmonic oscillation: amplitude and
phase will depend on the position s in the ring.
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The beta function
General solution of Hill’s equation:

x (s) =
√
ε
√
β (s) cos (ψ (s) + φ) (1)

ε, φ =integration constants determined by initial conditions

β (s) is a periodic function given by the focusing properties of the lattice ↔
quadrupoles

β (s + L) = β (s)
Inserting Eq. (1) in the equation of motion, we get (Floquet’s theorem) the
following result

ψ (s) =
ˆ s

0

ds
β (s)

ψ (s) is the “phase advance” of the oscillation between the points 0 and s in the
lattice. For one complete revolution, ψ (s) is the number of oscillations per turn,
the “tune”

Q =
1
2π

˛
ds
β (s)

ε is the “emittance” also known as Courant-Snyder invariant.
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Beam emittance and phase-space ellipse
General solution of the Hill’s equation

{
x (s) =

√
ε
√
β (s) cos (ψ (s) + φ) (1)

x ′ (s) = −
√
ε√
β(s)
{α (s) cos (ψ (s) + φ) + sin (ψ (s) + φ)} (2)

From Eq. (1) we get

cos (ψ (s) + φ) =
x (s)

√
ε
√
β (s)

α (s) = −1
2
β′ (s)

γ (s) =
1 + α (s)2

β (s)

Insert into Eq. (2) and solve for ε

ε = γ (s) x (s)2 + 2α (s) x (s) x ′ (s) + β (s) x ′ (s)2

I ε is a constant of the motion, independent of s
I it is a parametric representation of an ellipse in the xx ′ space
I the shape and the orientation of the ellipse are given by α, β, and γ ⇒ these are

the Twiss parameters
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Beam emittance and phase-space ellipse

ε = γ (s) x (s)2 + 2α (s) x (s) x ′ (s) + β (s) x ′ (s)2

Liouville: in an ideal storage
ring, if there is no beam energy
change, the area of the ellipse in
the phase space x−x ′ is constant

A = π · ε = const

ε beam emittance = area of ellipse. It is an intrinsic beam parameter and cannot
be changed by the focal properties.
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Particle tracking in a storage ring

Computation of x and x ′ for each linear el-
ement, according to matrix formalism. We
plot x and x ′ as a function of s

10 / 27



Particle tracking and the beam ellipse

For each turn x , x ′ at a given position s1 and plot in the phase-space diagram

Plane: x − x ′
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The emittance and the phase-space ellipse
Given the particle trajectory:

x (s) =
√
ε
√
β (s) cos (ψ (s) + φ)

I the max. amplitude is:
x̂ (s) =

√
εβ

I the corresponding angle, in x̂ (s), can be found putting x̂ (s) =
√
εβ in Eq.

ε = γ (s) x (s)2 + 2α (s) x (s) x ′ (s) + β (s) x ′ (s)2

and solving for x ′:

ε = γ · εβ + 2α
√
εβ · x ′ + βx ′2

→ x̂ ′ = −α
√
ε

β
←

Important remarks:
I A large β-function corresponds to a large beam size and a small beam

divergence
I In the middle of a quadrupole, β is maximum, and α = 0 ⇒ x ′ = 0
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The emittance and the phase-space ellipse
Let’s repeat the remarks:

I A large β-function corresponds to a large beam size and a small beam divergence
I In the middle of a quadrupole, β is maximum, and α = 0 ⇒ x ′ = 0
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Emittance of an ensemble of particles
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Emittance of an ensemble of particles
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The beam matrix
To track a beam of particles, let’s assume with Gaussian distribution, the beam ellipse can be
characterised by a “beam matrix” Σ

The equation of an ellipse can be written in ma-
trix form:

XT ΣX = 1

with X =

(
x
x ′

)
,

Σ =

(
σ11 σ12
σ21 σ22

)
=

( 〈
x2〉 〈xx ′〉
〈x ′x〉

〈
x ′2
〉 )

Σ is the covariance matrix of the particles distri-
bution

I The area of the ellipse is
A = π

√
detΣ = πε

with slope r21 = σ21/
√
σ11σ22.

I ε is again the beam emittance. For an ensamble of particles, ε is the area covered by the
particles in the transverse x-x ′ phase-space, and it is preserved due to the Liouville’s
theorem.
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The transfer matrix M

As we have already seen, a general solution of the Hill’s equation is:

x (s) =
√
εβ (s) cos (ψ (s) + φ)

x ′ (s) = −
√

ε

β (s)
[α (s) cos (ψ (s) + φ) + sin (ψ (s) + φ)]

Let’s remember some trigonometric formulæ:

sin (a± b) = sin a cos b ± cos a sin b,
cos (a± b) = cos a cos b ∓ sin a sin b, . . .

then,

x (s) =
√
εβ (s) (cosψ (s) cosφ− sinψ (s) sinφ)

x ′ (s) = −
√

ε

β (s)
[α (s) (cosψ (s) cosφ− sinψ (s) sinφ)+

+ sinψ (s) cosφ+ cosψ (s) sinφ]
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At the starting point, s (0) = s0, we put ψ (0) = 0. Therefore we have

cosφ =
x0√
εβ0

sinφ = − 1√
ε

(
x ′0
√
β0 +

α0x0√
β0

)
If we replace this in the formulæ, we obtain:

x (s) =

√
βs

β0
{cosψs + α0 sinψs} x0 +

{√
βsβ0 sinψs

}
x′0

x′ (s) =
1

√
βsβ0

{(α0 − αs) cosψs − (1 + α0αs) sinψs} x0 +

√
β0

βs
{cosψs − αs sinψs} x′0

The linear map follows easily,

(
x
x′
)

s
= M

(
x
x′
)

0
→ M =


√
βs
β0

(cosψs + α0 sinψs)
√
βsβ0 sinψs

(α0−αs ) cosψs−(1+α0αs ) sinψs√
βsβ0

√
β0
βs

(cosψs − αs sinψs)



I We can compute the single particle trajectories between two locations in the
ring, if we know the α, β, and γ at these positions!
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Periodic lattices
The transfer matrix for a particle trajectory

M =

 √
βs
β0

(cosψs + α0 sinψs)
√
βsβ0 sinψs

(α0−αs) cosψs−(1+α0αs) sinψs√
βsβ0

√
β0
βs

(cosψs − αs sinψs)


simplifies considerably if we consider one complete turn...

M =

(
cosψL + αs sinψL βs sinψL
−γs sinψL cosψL − αs sinψL

)

where ψL is the phase advance per period

ψL =

ˆ s+L

s

ds
β (s)

Remember: the tune is the phase advance in
units of 2π:

Q =
1
2π

˛
ds
β (s)

=
ψL

2π
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Stability criterion
We have seen that if our particles perform one complete turn, the transport map
is

M =

(
cosψL + αs sinψL βs sinψL
−γs sinψL cosψL − αs sinψL

)
=

= cosψL

(
1 0
0 1

)
︸ ︷︷ ︸

I

+ sinψL

(
αs βs
−γs −αs

)
︸ ︷︷ ︸

J

What happens if we consider N turns?

MN = (I cosψL + J sinψL)
N = I cosNψL + J sinNψL

⇒ The motion for N turns remains bounded if the elements of MN remain
bounded:

ψL ∈ R |cosψL| < 1 |trace (M)| < 2
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Stability criterion ... demonstrated
Matrix for 1 turn:

M = cosψL

(
1 0
0 1

)
︸ ︷︷ ︸

I

+ sinψL

(
α β
−γ −α

)
︸ ︷︷ ︸

J

Matrix for 2 turns:

M2 = (I cosψ1 + J sinψ1) (I cosψ2 + J sinψ2)

= I2 cosψ1 cosψ2 + IJ cosψ1 sinψ2 + JI sinψ1 cosψ2 + J2 sinψ1 sinψ2

now
I2 = I

IJ =

(
1 0
0 1

)(
α β
−γ −α

)
=

(
α β
−γ −α

)
= J

JI =

(
α β
−γ −α

)(
1 0
0 1

)
=

(
α β
−γ −α

)
= J

J2 =

(
α β
−γ −α

)(
α β
−γ −α

)
=

(
α2 − γβ αβ − βα
−γα + αγ α2 − γβ

)
=

(
−1 0
0 −1

)
= −I

which brings us to

M2 = I cos (ψ1 + ψ2) + J sin (ψ1 + ψ2) = I cos (2ψ) + J sin (2ψ)

⇒ MN = I cos (Nψ) + J sin (Nψ)
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The transformation for α, β, and γ
Consider two positions in the storage ring: s0, s(

x
x ′

)
s
= M

(
x
x ′

)
s0

with
M = MQF · MD · MBend · MD · MQD · · · ·

M =

(
C S
C ′ S′

)
M−1 =

(
S′ −S
−C ′ C

)

Since the Liouville theorem holds, ε = const:

ε = βx ′2 + 2αxx ′ + γx2

ε = β0x ′20 + 2α0x0x ′0 + γ0x2
0
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We express x0 and x ′0 as a function of x and x ′:(
x
x ′

)
s0

= M−1
(

x
x ′

)
s
⇒

x0 = S ′x − Sx ′

x ′0 = −C ′x + Cx ′

Inserting into ε we obtain:

ε = βx ′2 + 2αxx ′ + γx2

ε = β0
(
−C ′x + Cx ′

)2
+ 2α0

(
S ′x − Sx ′

) (
−C ′x + Cx ′

)
+ γ0

(
S ′x − Sx ′

)2
We need to sort by x and x ′:

β (s) = C 2β0 − 2SCα0 + S2γ0

α (s) = −CC ′β0 +
(
SC ′ + S ′C

)
α0 − SS ′γ0

γ (s) = C ′2β0 − 2S ′C ′α0 + S ′2γ0
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The transformation for α, β, and γ

In matrix notation:

 β
α
γ


s

=

 C 2 −2SC S2

−CC ′ SC ′ + S ′C −SS ′

C ′2 −2S ′C ′ S ′2

 β
α
γ


0

1. this expression is important, and useful
2. given the twiss parameters α, β, γ at any point in the lattice we can

transform them and compute their values at any other point in the ring
3. the transfer matrix is given by the focusing properties of the lattice elements,

the elements of M are just those that we used to compute single particle
trajectories

4. go back to point 1.
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Beam matrix and Twiss parameters

The beam matrix is the covariance matrix of the particle distribution

Σ =

(
σ11 σ12
σ21 σ22

)
=

( 〈
x2〉 〈xx ′〉
〈x ′x〉

〈
x ′2
〉 )

this matrix can be also expressed in terms of Twiss parameters α, β, γ and ε:

Σ =

( 〈
x2〉 〈xx ′〉
〈x ′x〉

〈
x ′2
〉 ) = ε

(
β −α
−α γ

)
We can transport the beam matrix, or the twiss parameters, from 0 to s by two equivalent ways:

I Twiss 3× 3 transport matrix β
α
γ


s

=

 C2 −2SC S2

−CC ′ SC ′ + S ′C −SS ′

C ′2 −2S ′C ′ S ′2

 β
α
γ


0

I Using the transfer matrix M =

(
C S
C ′ S ′

)
0→s

:

Σs = M Σ0 MT
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Summary

equation of motion: x′′ (s) + K (s) x (s) = 0, K = 1/ρ− k

general solution of the

Hill’s equation: x (s) =
√
εβ (s) cos (ψ (s) + φ)

phase advance & tune: ψ12 =
´ s2
s1

ds
β(s) , Q = 1

2π
¸ ds
β(s)

emittance: ε = γ (s) x (s)2 + 2α (s) x (s) x′ (s) + β (s) x′ (s)2

transfer matrix s1 → s2: M =


√
βs
β0

(cosψs + α0 sinψs)
√
βsβ0 sinψs

(α0−αs ) cosψs−(1+α0αs ) sinψs√
βsβ0

√
β0
βs

(cosψs − αs sinψs)



matrix for 1 turn: M =

(
cosψL + αs sinψL βs sinψL
−γs sinψL cosψL − αs sinψL

)

stability criterion: |trace (M)| < 2
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