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Re-Introducing the dispersion

So far we have studied monochromatic beams of particles, but this is slightly unrealistic:
We always have some (small) momentum spread among all particles: Ap = p — po # 0.

Consider three particles with p respectively: less than, greater than, and equal to po ,
traveling through a dipole. Remembering Bp = g:

The system introduces a correlation of momentum with transverse position. This
correlation is known as dispersion (an intrinsic property of the dipole magnets).
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Dispersion function and orbit

We need to study the motion for particles with Ap =p — po # 0 :
1Ap

X" (s)+ K(s)x(s) ===

() + K (e)x(e) = 2

The general solution of this equation is:

x5 (s) + K (s)xs (s) =0
= +
"= ok o -

with xp (s) = D (s) %.

Remarks
> D (s) is that special orbit that a particle would have for Ap/p =1
> xp (s) describes the deviation from the new closed orbit for an
off-momentum particle with a certain Ap
> the orbit of a generic particle is the sum of the well known x3 (s) and xp (s)
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Understanding the solution x (s) = x3 (s) + xp (s)

with xp (s) = D (s) %.

\
,J
/

\—Cclosed orbit

\ for p=po closed crbit

t (b} for p=<po

\

|-xp=Dls ) bp
- Po

\ “~7~—closed orbit
\ e for p<p, / p>p
~ s central design orbit
. 2 =closed orbit for p=p,

Closed orbit for particles with momentum p # po in
a weakly (a) and strongly (b) focusing circular accelerator.

> xp (s) = D (s) 52 describes the deviation of the closed orbit for off-momentum
particles with a fixed Ap from the reference orbit

> x3 (s) describes the betatron oscillation around this dispersive closed orbit
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Dispersion and orbit propagation
Inside a magnet, the dispersion trajectory is solution of D" (s) + K (s) D (s) = % :

D(s)—S(s)/Ospgt)C(t)dt—C(s)/ospgt)S(t)dt

Now the orbit:
x(s) = xg (s) + xp (s)

x(s) = C(s)xo—l-S(s)Xé—l—D(s)&

X . cC S x Ap D
(2).-(e $)(2)2(5),
We can rewrite the solution in matrix form:
X c S D X
X' = ¢ s o X'
()83 9)02),

Exercise: show that D (s) is a solution for the equation of motion, with the initial
conditions Do = D} = 0.

In matrix form
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Dispersion examples

Let's study, for different magnetic elements, the solution of:
D (s) —5(5)/SLC(t)dt— C(s)/sisu)dt
o p(t) o p(t)
at the exit of the element: that is, D (s) with s = Lmagnet
» Drift space:

1 L
MDrift:<0 1)

C(t)=1, S(t)=1L, p(t) =00 = the integrals cancel
1 L O
Mpiee=1 0 1 0
0 0 1
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Dispersion function: sector dipole

» Sector dipole:
K = p%:
_ cos (\/RL) L sin (\/RL) _ cos L psin L
Motpole = ( ~VKsin (VKL) \/ckos (ver) ) ( “lsint cost )

which gives
D (s :p(l—cosf>
(5 ;
D' (s) = sin —
(s) p
therefore
L <L L
cos psin p(l—cos ;)
Mpipole = | —1ginL cost sin L
p p p p
0 0 1
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Dispersion function: quadrupole

» Focusing quadrupole, K > 0:

cos (\/RL) ﬁ sin (\/RL) 0
Mar = | —\/Ksin (\/RL) cos (\/RL) 0
0 0 1

» Defocusing quadrupole, K < 0:

cosh (\/WL) \/T7I sinh (\/WL> 0
Map = | /[K]sinh (mL) cosh (\/WL) 0
0 0 1
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Dispersion propagation through the machine

» The equation:
1

D(s)—S(s)/osp:(Lt)C(t)dt—C(s)/osp(t)S(t)dt

shows the dispersion inside a magnet, which does not depend on the
dispersion that might have been generated by the upstreams magnets.

> At the exit of a magnet of length L, the dispersion reaches the value D (L,)
» ...then it propagates from there on through the rest of the machine, just like

any other particle:

b cC S D b
D/ — C/ S/ D/ D/
1 0 0 1 L/,

(to avoid confusion, D and D', are often called 1 and 7’)
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Closed orbit for an off-momentum particle

In a periodic lattice, also the dispersion must be periodic.

n
That is, for ( n ) we want:
1

The solution is:

(7177/):(17C)(1i5’)—05<12"5/ 1—5c
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Example of dispersion function in a FODO lattice

25 meter 180° Arc based on 90°-FODO lattice

®p=38Gevic 12
'E o=
g g
B4 AN A WP PN s WA 2
< A
I 12
o a
e
° =
0 BETA_X BETA_Y DISP_X DISP_Y 24.8792
— B e s B e B e s, B s B B s el B N
N ~ J\ v I\ J
2 - ‘half-empty ' cells 4. 909-FODO cells 2 ‘half-empty " cells
Aperture radius: r = 15 cm
12 ~ Dipoles: field: 3.9 Tesla length: 85 cm
15 « Quads: gradient: 25 Tesla/m (3.8 Tesla at the pole) length: 50 cm
. . . Lop(1+2 sin & . . .
Dispersion in a FODO cell: D* = %&—2). The dispersion has a maximum
2

at the focusing quadrupoles.
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Example of dispersion function

In this example from the HERA storage ring

O P ing, Lomi-A-Opt. 7/03 m. 8/0+

(DESY) we see the twiss parameters and the dis- !
persion near the interaction point. In the periodic
region,
xg(s)=1...2mm i T .
D(s)=1...2m ARAAANAANIAIMY N Und XA
Ap/p1-1073 —mriim_
R b PR T S T TR T T R T
emember: i
Ap e

x(s) = x5 (s) + D (s

Beware: the dispersion contributes to the beam size:

et (0:22) o (022

» We need to suppress the dispersion at the IP !

» We need a special insertion section: a dispersion suppressor
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The momentum compaction factor

The dispersion function relates the momentum error of a particle to the horizontal orbit
coordinate

The general solution of the equation of motion is

x(s):xﬁ(s)w(s)%

The dispersion changes also the length of the off-
energy orbit.

p /XA particle with offset x w.r.t. the design orbit:

/T : ds’ p+x / X
s z‘dS:dS(hPi) — = — ds:(1+7)ds

[/ ds p P

The circumference change is AC, thatis C' = ¢ (1 + %) ds=C+ AC

We define the "momentum compaction factor”, «, such that:
A—C = a& — a rough estimate is o = L
c " g e
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Magnetic imperfections

Hlgh order multipolar components and misalignments
Taylor expansion of the B field:

0B, 19*B, , 1 0B, 3 ..
B, (x) = Byo +WX+§ 5z < T3l oo X +... divide by Byo
dipole
quad sextupole octupole
There can be undesired multipolar compo-
W+ Opates nents, due to small fabrication defects

x10°¢

/J,on/

‘ Or also errors in the windings, in the gap h,

444 ... remember: B =

h

O German

® Italian

) NN S N N T
0 2 & 6 8 W 12 W 16

Moreover: “feed-down” effect = a misalign magnet of order n, behaves like a magnet of
order n + a magnet of order n — 1 overlapped

14 /35



Dipole magnet errors

Let’s imagine to have a magnet with B, = By + AB. This will give an additional kick to
each particle, and will distort the ideal design orbit

Fx=ev(Bo+ AB); Ax' = ABds/Bp

A dipole error will cause a distortion of the closed orbit, that will ,,run around” the
storage ring, being observable everywhere. If the distortion is small enough, it will still
lead to a closed orbit.

Example: 1 single dipole error X9

X 0
( ! )5 = Mlattice< Ax’ )0

In order to have bounded motion the tune @ must be non-integer, Q # 1. We see that
even for particles with reference momentum po an integer Q value is forbidden, since
small field errors are always present.
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Orbit distortion for a single dipole field error

X0 dipole kick 1/p*4s

We consider a single thin dipole field error at the location s = sp, with a kick angle Ax’.

_ X0 N )
X—‘(xswx') X*‘(xé)

are the phase space coordinates before and after the kick located at sp. The closed-orbit

condition becomes
X0 X0
ML attice (Xé) = (Xé -I—AX')

The resulting closed orbit at sg is
BoAx' , Ax'
X0 = ——=cosmQR; Xg=—F
2sinTQ 2sinTQ
where Q is the tune. The orbit at any other location s is
V 5550

x(s) = m cos (7rQ - |Hs - M0|)AX/

(see the references for a demonstration)

(sinTQ — o cos T Q)
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Orbit distortion for distributed dipole field errors

One single dipole field error

_ VB(s)B(0)
x(s) = 2sinTQ

Distributed dipole field errors

X(5) = 2L @ cos(r@ I (9) — (1)) A¥'dt

cos (1Q — |n(s) — 1 (0)]) Ax'

» orbit distortion is visible at any position s in the ring, even if the dipole error
is located at one single point s

» the (3 function describes the sensitivity of the beam to external fields

» the § function acts as amplification factor for the orbit amplitude at the
given observation point

> there is a singularity at the denominator when Q integer = it's called
resonance
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The resonances

Closed orbit distortion due to distributed dipole field errors:

) = 22T /5 cos (v~ n(5) — 1 (0)) B

Remember the definition of tune:

_
Q_27T

= it is the phase advance for a revolution i in units of 2.

Extremely important:

» In case of imperfections the orbit becomes unstable for Q integer

> Integer tunes lead to a resonant increase of the closed orbit amplitude in
presence of the smallest dipole field error!

18 /35



Tunes and resonances

The particles — oscillating under the influence of the external magnetic fields — can be
excited in case of resonant tunes to infinite high amplitudes.

There is particle loss within a short number of turns.

<

73

y y

vy, = integer

The cure:
1. avoid large magnet errors

2. avoid forbidden tune values in both planes

m-Qx+n-Qy, #p

with m, n, p integer numbers
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Resonance diagram

114 \ / /'/»

-
-
(]

Vertical Tune
=

S
[N

_—T TN/

18.6 28.8 29 29.2 29.4
Horizontal Tune

10.6

A resonance diagram for the Diamond light source. The lines shown are the
resonances and the black dot shows a suitable place where the machine could be

operated.
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Quadrupole errors: tune shift

Orbit perturbation described by a thin lens quadrupole:

M . 1 0 €Os 1o + asin fio Bsin o
Perturbed = | " Akds 1 —'sin o COS o — Qsin fig
perturbation ideal ring

Let's see how the tunes changes: one-turn map

M . cos 1o + asin o Bsin o
Perturbed =\ © Akds (cos po + arsin po) — ysin o Akdsfsin puo + cos o — avsin pig

Remember the rule for computing the tune:

2cos p = trace (M) = 2 cos o + Akdsg sin o
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Quadrupole errors: tune shift (cont.)
We rewrite cos p = cos (po + Ap)

1
cos (po + Ap) = cos o + EAkdsﬁ sin Lo

from which we can compute that

Ak
Ap = ;sﬂ shift in the phase advance
So+L
AQ :/ %ﬁ(s)ds tune shift

Important remarks:
» the tune shift if proportional to the S-function at the quadrupole

> field quality, power supply tolerances etc. are much tighter at places where
is large

» (3 is a measurement of the sensitivity of the beam
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Quadrupole errors: tune shift example
Deliberate change of a quadrupole strength in a synchrotron:

AG— /So+L AK (S)ﬁ(s) ds ~ AK (S) LquadB

47 47
=
] 72| AN | 0TS [ = i
the tune is measured permanently
After changing the strength of a quad:
we get a second peak
GI06 NR
¥=-6.7863: + 03803
03050
0.3000 .
02850 \“——\_\_
g 02000 _-----H-‘
10,2850
Gt T 1L
10,2800 *

0.01250 0.01300 0.01350 001400 D150 23 /35



Quadrupole errors: beta beat
all quadrupoles:

A quadrupole error at s causes distortion of S-function at s: Aj(s) due to the errors of

AB(s) _

1
3(s)  2sin2nQ 95/3(,5) Ak (t)cos (2mQ — 2 (u(t) — p(s))) dt
affects the element Mi> of the M matrix.

orbit is not affected to
first order !

1PN G4
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Quadrupole errors: chromaticity, &
Is an error (optical aberration) that happens in quadrupoles when Ap/p # 0:

The chromaticity £ is the variation of tune AQ with the relative momentum error:

Ap AQ
AQ=¢(— = E=—
Po Ap/p
Remember the quadrupole strength:
k:% with p = po + Ap

then

eg e Ap
po+ Ap ( )g °
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Quadrupole errors: chromaticity (cont.)

Po
= Chromaticity acts like a quadrupole error and leads to a tune spread:

1A 1A
A(?one quad — _E?kaﬁ (S) ds = AC?all quads — _Epif %k (S)B(S) ds

Therefore the definition of chromaticity & is

f=—2 b Kk(s)B(s)ds

A quads

The peculiarity of chromaticity is that it isn't due to external agents, it is generated by
the lattice itself!

Remarks:
» ¢ is a number indicating the size of the tune spot in the working diagram
» ¢ is always created by the focusing strength k of all quadrupoles
In other words, because of chromaticity the tune is not a point, but it is pancake
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Example: Chromaticity of the FODO cell

Consider a ring composed by N FODO cells like in figure, with two thin quads
separated by length L/2,

cell length

The natural chromaticity &y for the Neey cells is:

1 1 2\ 1 2\ 1
13 ———ygﬂsksds =——— N, L+ — —(L——
N 47 ()k(s) 47 sin cell + Afp ) fE Afg ) fp
1 2
- _TNceII/ /3(5) k(S)d = —71 Ncell L — L + L
a cell Hlf-’ 47 sin fe fpo  2fefp
f 1 12
zfiN Il {ﬁ+(1) -8B (i>} :_87"5inﬂNce”fFfD
47 cC fe o

The chromaticity of the ring is N times the chromaticity of each cell.
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Quadrupole errors: chromaticity

Tune signal for a nearly
uncompensated cromaticity
(Q'~20)

Ideal situation: cromaticity well corrected,
(Q=~1)
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Tune shift correction

Errors in the quadrupole fields induce tune shift:

Ak(s)B(s)ds

A =
@ 4

quads

Cure: we compensate the quad errors using other (correcting) quadrupoles

» If you use only one correcting quadrupole, with 1/f = Ak L
> it changes both Q« and Q,:

AQ. = P ng AQ, = Bry

4rhy T Arf
» We need to use two independent correcting quadrupoles:
_ ﬁlx /BZX
A= 1k T ik ( AQ« ): i( Bix  Box ) ( 1/h )
AQ _ ﬁly _ ﬂZy AQy 4 ﬂly 52)’ 1/f2
Y7 4Arfi  Arh

> Solve by inversion:

( 1/f ) _ 47 ( Bay  —Pax ) ( AQ. )
1/f2 IBIX,BZy - BZxﬁly _ﬁly le AQy
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Chromaticity correction

Remember what is chromaticity: the quadrupole focusing experienced by particles

changes with energy

» it induces tune shift, which can cause beam lifetime reduction due to resonances

Cure: we need additional energy dependent focusing. This is given by sextupoles

Aplp >0 A focal length — — i
i |
1
A =0/ L ' /
\

quadrupole!
App,<0 - sextupole ‘
1
» The sextupole magnetic field rises quadratically:
Bx=&x L 9B 0B, .
1 = =
B, =3& (X -y ) 9y Ox

2
it provides a linearly increasing quadrupole gradient

a "gradient"
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Chromaticity correction (cont.)

Now remember:

» Normalised quadrupole strength is

g -2
k=-—="-[m
p/e ]

» Sextupoles are characterised by a normalised sextupole strength ko, which
carries a focusing quadrupolar component ki:

_ B 3 g _ Bx . o
o= m ok ple " ]
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Cure for chromaticity: we need sextupole magnets installed in the storage ring in
order to increase the focusing strength for particles with larger energy

> A sextupole at a location with dispersion does the trick: x — x+ D - %

-

» for x = 0 it corresponds to an energy-dependent focal length

k1
g A A
- = l;lLsext = i D7p ‘Lsext = k2D : 7p : Lsext
feext p/e P p
~—~—
k2
Now the formula for the chromaticity rewrites:
= - PkEBE)s + - Ph(9)DF(S)d
= —— S s)ds —_— S s)ds
47 47 2
chromaticity due to quadrupoles chromaticity due to sextupoles
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Design rules for sextupole scheme

» Chromatic aberrations must be corrected in both planes = you need at least
two sextupoles

» In each plane the sextupole fields contribute with different signs to the
chromaticity &, and &,:

b= §£ [k — S£Dy + SpDy] By () ds

gy = % % [k — SeD, + SDDX] ﬂy (5) ds

» To minimise chromatic sextupoles strengths, sextupoles should be located
near quadrupoles where 8,D, and 3, D, are maximum.

» Important remark: for offset orbits, the sextupoles introduce geometric
aberrations. They can be reduced by adopting a —/ transformation scheme:

> put sextupoles in (2n + 1) = phase advance apart in a periodic lattice to
compensate the effect

33/35



Summary

orbit for an off-momentum particle  x(s) = xg (s) + D (s) %

dispersion trajectory D (s) = S(s) fo ok (t)ydt —C(s) fo ﬁs (t)dt
X c S D X
equations of motion with dispersion x' = c s D x'
Ap/p ) 0 0 1 ae/p )
definition of momentum compaction A—CC = a%

stability condition m-Qx+n-Qy #p with n, m, p integers

tune shift AQ = 4177 quads Ak (s) B (s)ds
361
beta beat B (s) 2sin27Q

8 (1) Ak (1) os (27 @ — 2.1 () — (51 e

chromaticity &= 22 = = uads K (sYB(s)ds
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