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Reminder of the previous lectures
Equation of motion: Solution of trajectory

equations:
x ′′ + Kx = 0 K = 1/ρ2 − k ... horiz. plane

K = k ... vert. plane

(
x
x ′

)
s1

= M ·
(

x
x ′

)
s0

MD =

(
1 L
0 1

)

MQF =

(
1 0
− 1

f 1

)

MQD =

(
1 0
1
f 1

)

Mtotal = MQF · MD · MBend · MD · MQD · · · ·

1
f

= k LQ focal length
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Beam emittance and phase-space ellipse
General solution of the Hill’s equation{

x (s) =
√
ε
√
β (s) cos (ψ (s) + φ) (1)

x ′ (s) = −
√
ε√
β(s)
{α (s) cos (ψ (s) + φ) + sin (ψ (s) + φ)} (2)

To determine the Twiss parameters α, β, and γ from Eq. (1) we get

cos (ψ (s) + φ) =
x (s)

√
ε
√
β (s)

α (s) = −1
2
β′ (s) beam divergence

γ (s) =
1 + α (s)2

β (s)

that we insert into Eq. (2) and solve for ε

ε = γ (s) x (s)2 + 2α (s) x (s) x ′ (s) + β (s) x ′ (s)2

I ε is a constant of the motion, independent of s
I parametric representation of an ellipse in the xx ′ space
I shape and orientation of the ellipse are given by α, β, and γ
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Beam emittance and phase-space ellipse

ε = γ (s) x (s)2 + 2α (s) x (s) x ′ (s) + β (s) x ′ (s)2

Liouville: in an ideal storage
rings, the area of the ellipse in
the phase space is constant

A = π · ε = const

ε beam emittance = with lots of particles, it’s the area of the particle ensemble.
It is an intrinsic beam parameter that cannot be changed by the focal properties.
In short: it’s the area covered in transverse x , x ′ phase-space ... and is constant
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Beam emittance

A = π · ε = const

I A particle beam is reasonably well
described by a two dimensional Gaussian
distribution in phase space

I The lines of constant phase-space density
are then ellipses

I Since the phase-space density decreases
only slowly with amplitude, the
phase-space area containing all particles
might be hard to determine
(experimentally as well as theoretically)

I Also, it is not the quantity relevant for
most of the applications. Therefore, the
emittance is defined as 1/π times the
phase-space area containing a certain
fraction of the particles (e.g. 90%).
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The transfer matrix M
I Transformation of particle coordinates:(

x
x ′

)
s

= M2×2

(
x
x ′

)
0

I using matrix notation in terms of the magnet parameter K :

Mfoc =

 cos
(√

KL
)

1√
K
sin
(√

KL
)

−
√

K sin
(√

KL
)

cos
(√

KL
)  =

(
C S
C ′ S ′

)

I in Twiss form, i.e. for a periodic system:

MTwiss =

(
cosµ+ α sinµ β sinµ
−γ sinµ cosµ− α sinµ

)
= cosµ

(
1 0
0 1

)
︸ ︷︷ ︸

I

+ sinµ
(

α β
−γ −α

)
︸ ︷︷ ︸

J

with cosµ = 1
2 trace (M)

I Transport of Twiss parameters: β
α
γ


s

=

 C2 −2SC S2

−CC ′ SC ′ + S ′C −SS ′

C ′2 −2S ′C ′ S ′2

 β
α
γ


0
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Lattice design in particle accelerators
Or..."how to build a storage ring"

High energy accelerators are mostly circular machines
we need to juxtapose a number of dipole magnets,
to bend the design orbit to a closed ring, then add
quadrupole magnets (FODO cells) to focus the beam
transversely

The geometry of the system is determined by the following equality

centrifugal force = Lorentz force

Lorentz force FL = evB
Centrifugal force Fcentr = γmv2

ρ

γmv �2
ρ

= e�vB

p
q

= Bρ

Bρ is the well known beam ridigity
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Lattice design: the magnetic guide

Bρ = p/q

Circular orbit: the dipole mag-
nets define the geometry

α =
ds
ρ
≈ B L

Bρ

field map of a storage ring dipole magnet

The angle spanned in one revolution must be 2π, so, for a full circle:

α =

´
Bdl
Bρ

= 2π →
ˆ

Bdl ≈ NLBendB = 2π
p
q

this defines the integrated dipole field around the machine.

Note that usually ∆B
B ≈ 10−4 is required!
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7000 GeV proton storage ring
ˆ

Bdl ≈NLBendB = 2πp/e

N = 1232 dipole magnets
B ≈

2π · 7000 · 109 eV
1232 · 15 m · 3 · 108 m

s e
= 8.3 T

LBend = 15 m

q = +e
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Focusing forces for single particles

x ′′ + Kx = 0

K = −k + 1/ρ2 hor. plane

K = k vert. plane

dipole magnet 1
ρ = B

p/q

quadrupole magnet k = g
p/e


Example: the LHC ring

Bending radius: ρ = 2.53 km
Quad gradient: g = 220 T/m

k = 9.4 · 10−3 m−2

1/ρ2 = 1.3 · 10−7 m−2

For estimates, in large accelerators, the weak focusing term 1/ρ2 can in general

be neglected

10 / 26



The FODO lattice

I Most high energy accelerators or storage rings have a periodic sequence of
quadrupole magnets of alternating polarity in the arcs

I A magnet structure consisting of focusing and defocusing quadrupole lenses in
alternating order with nothing in between

I Nota bene: “nothing” here means the elements that can be neglected on first sight:
drift, bending magnet, RF structures ... and experiments...
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Periodic solution in a FODO Cell

Output of MAD-X
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The FODO cell
The transfer matrix gives all the information we need.

In thin-lens approximation, we have:

MF =

(
1 0
− 1

f 1

)
; MO =

(
1 L/2
0 1

)
; MD =

(
1 0

+ 1
f 1

)
the transformation matrix of the cell is:

MFODO = MF ·MO ·MD ·MO

(notice that you can also write M = MF/2 ·MO ·MD ·MO ·MF/2, or other
permutations), which corresponds to

MFODO =

(
1 + L

2f L + L2

4f
− 2L

f 2 1− L
2f −

L2

4f 2

)
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The FODO cell (cont.)
If we compare the previous matrix with the Twiss representation over one period,

MFODO =

(
1 + L

2f L + L2

4f
− 2L

f 2 1− L
2f −

L2

4f 2

)

MTwiss =

(
cosµ+ α sinµ β sinµ
−γ sinµ cosµ− α sinµ

)
= cosµ

(
1 0
0 1

)
︸ ︷︷ ︸

I

+ sinµ
(

α β
−γ −α

)
︸ ︷︷ ︸

J

we can derive interesting properties.

I Phase advance

cosµ =
1
2
trace (M) = 1− L2

8f 2

remembering that cosµ = 1− 2 sin2 µ
2

∣∣∣sin µ
2

∣∣∣ =
L
4f

This equation allows to compute the phase advance per cell from the cell length
and the focal length of the quadrupoles.
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The FODO cell (cont.)
I Example: compute the focal length in order to have a phase advance of 90◦ per cell

f =
1√
2
L
2

line an emittance measurement station
I Stability requires that |cosµ| < 1, that is

L
4f

< 1 → stability is for: f > L/4 (or L < 4f )

I Compute the phase advance per cell from the transfer matrix: From
cosµ = 1

2 trace (M)

µ = arccos
(
1
2
trace (M)

)
I Compute β-function and α parameter

β =
M12

sinµ

α =
M11 − cosµ

sinµ
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The FODO cell: useful formulæ
For a FODO cell like in figure, with two thin quads separated by length L/2

one has:

f = ± L
4 sin µ

2

β± =
L
(
1± sin µ

2

)
sinµ

α± =
∓1− sin µ

2
cos µ2

D± =
Lφ
(
1± 1

2 sin
µ
2

)
4 sin2 µ

2

φ is the total bending angle of the whole cell.
16 / 26



βmax and βmin as a function of µ
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The FODO cell (example 1)

The limiting case L = 4f has a simple interpretation.
I It is well known from optics that an object at a distance a = 2f from a

focusing lens has its image at b = 2f

I The defocusing lenses have no effect if a point-like object is located exactly
on the axis at distance 2f from a focusing lens, because they are traversed
on the axis

I If however the lens system is moved further apart (L > 4f ), this is no more
true and the divergence of the light or particle beam is increased by every
defocusing lens
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The FODO cell (example 2)

I Phase space dynamics in a simple circular
accelerator consisting of one FODO cell
with two 180◦ bending magnets located in
the drift spaces (the O’s)

I The periodicity of α, β, and γ is reflected
by the fact that the phase-space ellipse is
transformed into itself after each turn

I An individual particle trajectory, however,
which starts, for instance, somewhere on
the ellipse at the exit of the focusing
quadrupole (small circle), is seen to move
on the ellipse from turn to turn as
determined by the phase angle µ

I Thus, an individual particle trajectory is
not periodic, while the envelope of a
whole beam is
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Non-periodic beam optics

I In the previous sections the Twiss parameters α, β, γ, and µ have been
derived for a periodic, circular accelerator. The condition of periodicity was
essential for the definition of the beta function (Hill’s equation)

I Often, however, a particle beam moves only once along a beam transfer
line, but one is nonetheless interested in quantities like beam envelopes and
beam divergence

I In a circular accelerator α, β, and γ are completely determined by the
magnet optics and the condition of periodicity (beam properties are not
involved - only the beam emittance is chosen to match the beam size)

I In a transfer lineα, β, and γ are no longer uniquely determined by the
transfer matrix, but they also depend on initial conditions which have to be
specified in an adequate way
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Non-periodic beam optics (example)
Optics of a non-periodic system including non-periodic optics. “Matching”
sections connect parts with different periodic conditions.

The matrix

 β
α
γ


s

= M3×3

 β
α
γ


0

with

M3×3 =

 C2 −2SC S2

−CC′ SC′ + S′C −SS′

C′2 −2S′C′ S′2



allows to compute the magnets
parameters for the matching sec-
tions
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Introducing dispersion

I in a circular particle accelerator, a particle with p = p0 and
x = y = x ′ = y ′ = 0 (i.e. zero displacement and zero slope) will move on
the design orbit for an arbitrary number of revolutions

I particles with p = p0 but non-zero displacement and/or slope will perform
betatron oscillation with a certain tune Q

I particles with momentum p 6= p0 will no longer move on the design orbit

Closed orbit for particles with momentum p 6= p0 in a weakly (a) and strongly (b) focusing
circular accelerator.
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Solution of the inhomogeneous Hill’s equation

A particle with ∆p = p − p0 6= 0 satisfies the inhomogeneous Hill equation for the
horizontal motion:

x ′′ (s) + K (s) x (s) =
1
ρ

∆p
p0

the total deviation of the particle from the reference orbit can be written as

x (s) = xβ (s) + xD (s)

where:

I xD (s) = D (s) ∆p
p0

describes the deviation of the closed orbit for off-momentum
particles p0 with a fixed ∆p from the reference orbit, where D (s) is the solution of
the equation

D ′′ (s) + K (s)D (s) =
1
ρ

I xβ (s) describes the betatron oscillation around this closed dispersion orbit, solution
if the homogeneous equation x ′′β (s) + K (s) xβ (s) = 0
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Dispersion function and orbit

The dispersion function D (s) is the solution of the inhomogeneous Hill’s equation:

D ′′ (s) + K (s) D (s) =
1
ρ

The Dispersion function D(s):

I is that special orbit that an ideal particle would have for ∆p/p = 1

The orbit x (s) = xβ (s) + xD (s), with xD (s) = D (s) ∆p
p0

, can be rewritten in matrix
formalism 

x (s) = xβ (s) + xD (s)

x (s) = C (s) x0 + S (s) x ′0 + D (s)
∆p
p(

x
x ′

)
s

=

(
C S
C ′ S ′

)(
x
x ′

)
0

+
∆p
p

(
D
D ′

)
0
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Dispersion function and orbit


x (s) = xβ (s) + xD (s)

x (s) = C (s) x0 + S (s) x ′0 + D (s)
∆p
p

In matrix form (
x
x ′

)
s

=

(
C S
C ′ S ′

)(
x
x ′

)
0

+
∆p
p

(
D
D′

)
0

We can rewrite the solution in matrix form: x
x ′

∆p/p


s

=

 C S D
C ′ S ′ D′
0 0 1

 x
x ′

∆p/p


0

Inside a magnet, the dispersion trajectory is solution of D ′′ (s) + K (s)D (s) = 1
ρ
:

D (s) = S (s)

ˆ s

0

1
ρ (t)

C (t) dt − C (s)

ˆ s

0

1
ρ (t)

S (t) dt

Exercise: show that D (s) is a solution for the equation of motion, with the initial
conditions D0 = D ′0 = 0.
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Summary

integrated dipole field over a turn
´
Bdl ≈ NLBendB = 2π p

q

FODO cell MFODO =

(
1 + L

2f L + L2

4f
− 2L

f 2 1− L
2f −

L2

4f 2

)

stability in a FODO cell f > L/4

phase advance in a FODO cell µ = arccos
( 1

2 trace (M)
)

there exist matching sections

 β
α
γ


s

= M3×3

 β
α
γ


0

inhomogeneous Hill’s equation x ′′ +
(

1
ρ2 − k

)
x = 1

ρ
∆p
p0

...and its solution x (s) = xβ (s) + D (s) ∆p
p

26 / 26


