Transverse Beam Dynamics

JUAS tutorial 2

15 January 2014

1 Exercise: geometry of a storage ring, thin lens, tune, dispersion

Consider a proton synchrotron accumulator made of identical cells. The relevant ring parameters are given in the following table:

Proton kinetic energy	2 GeV
Cell type	Symmetric triplet ${ }^{(*)}$
Ring circumference	960 m
Integrated quadrupole gradient (J Gdl)	1.5 T

${ }^{(*)}$ Note: A thin lens symmetric triplet cell consists of a thin lens defocusing quadrupole of focal length $-f$, followed with a drift space of length L_{1}, a thin lens focusing quadrupole of focal length f, a drift of length L_{2}, a thin lens dipole of horizontal bending angle θ, a drift of length L_{2}, a thin lens focusing quadrupole of focal length f, a drift of length L_{1}, and a thin lens defocusing quadrupole of focal length $-f$ (see Figure below).

1. Compute the focal length f of the quadrupoles. The proton rest mass is 938 MeV .
2. Given the numerical values $L_{1}=1.5 \mathrm{~m}$ and $L_{2}=6 \mathrm{~m}$:

- Compute the horizontal and vertical transfer matrices of a triplet cell (take into account that the sign of the focal length changes when going from horizontal to vertical plane).
- Compute the horizontal and vertical machine tunes.
- Compute the horizontal and vertical betatron functions at the entrance of a triplet cell.
- Compute the horizontal and vertical dispersion functions at the entrance of a triplet cell.

Hint:
The 3×3 horizontal transfer matrix for one symmetric triplet cell is (in the thin lens approximation):
$M_{\text {triplet }}=\left(\begin{array}{ccc}\frac{f^{3}+2 L_{1}^{2} L_{2}-2 L_{1} f\left(L_{1}+L_{2}\right)}{f^{3}} & \frac{2\left(f-L_{1}\right)\left(L_{1} f+L_{2} f-L_{1} L_{2}\right)}{f^{2}} & \left(L_{1}+L_{2}-\frac{L_{1} L_{2}}{f}\right) \theta \\ \frac{2 L_{1}\left(L_{1} L_{2}-L_{1} f-f^{2}\right)}{f^{4}} & \frac{f^{3}+2 L_{1}^{2} L_{2}-2 L_{1} f\left(L_{1}+L_{2}\right)}{f^{3}} & \frac{\left(f^{2}+L_{1} f-L_{1} L_{2}\right)}{f^{2}} \theta \\ 0 & 0 & 1\end{array}\right)$
for the transport of a vector $\left(\begin{array}{c}x \\ x^{\prime} \\ \Delta p / p_{0}\end{array}\right)$, where $\Delta p / p_{0}$ is the momentum offset with respect to the design momentum p_{0}.

2 Exercise: emittance

From the solution of the trajectory equation,

$$
x=\sqrt{\beta \epsilon} \cos \left[\phi+\phi_{0}\right]
$$

- Derive the following relation:

$$
\gamma x^{2}+2 \alpha x x^{\prime}+\beta x^{\prime 2}=\epsilon
$$

where ϵ is the emittance, and β, α, and γ are the so-called Twiss parameters:

$$
\alpha \equiv-\frac{\beta^{\prime}}{2}, \text { and } \gamma \equiv \frac{1+\alpha^{2}}{\beta}
$$

(DO NOT CONFUSE this γ with the relativistic Lorentz factor!).

3 Exercise: normalized phase space

Let us consider the following phase space vector: $\left(x, x^{\prime}\right)$. The transformation to a normalized phase space $\left(X, X^{\prime}\right)$ is given by:

$$
\binom{X}{X^{\prime}}=\left(\begin{array}{cc}
1 / \sqrt{\beta_{x}} & 0 \\
\alpha_{x} / \sqrt{\beta_{x}} & \sqrt{\beta_{x}}
\end{array}\right)\binom{x}{x^{\prime}}
$$

The normalization process of the phase space is illustrated in the figure below:

If we know that the transfer matrix between two points 1 and 2 (with phase advance ϕ_{x} between them) in the phase space $\left(x, x^{\prime}\right)$ is given by:

$$
M_{12}=\left(\begin{array}{cc}
\sqrt{\frac{\beta_{x 2}}{\beta_{x 1}}}\left(\cos \phi_{x}+\alpha_{x 1} \sin \phi_{x}\right) & \sqrt{\beta_{x 1} \beta_{x 2}} \sin \phi_{x} \\
\frac{\left(\alpha_{x 1}-\alpha_{x 2}\right) \cos \phi_{x}-\left(1+\alpha_{x 1} \alpha_{x 2}\right) \sin \phi_{x}}{\sqrt{\beta_{x 2} \beta_{x 1}}} & \sqrt{\frac{\beta_{x 1}}{\beta_{x 2}}}\left(\cos \phi_{x}-\alpha_{x 2} \sin \phi_{x}\right)
\end{array}\right)
$$

Obtain the transfer matrix between two points 1 and 2 in the normalized phase space.

