Transverse Beam Dynamics

JUAS tutorial 4
17 January 2014

1 Exercise: chromaticity in a FODO cell

Consider a ring made of $N_{\text {cell }}$ identical FODO cells with equally spaced quadrupoles. Assume that the two quadrupoles are both of length l_{q}, but their strengths may differ.

1.1 Calculate the maximum and the minimum betatron function in the FODO cell as a function of the length l_{q}, the focal lengths f_{F}, f_{D} and the phase advance μ. (Use the thin lens approximations)

1.2 Calculate the natural chromaticities for this machine.

1.3 Show that for short quadrupoles, if $f_{F} \simeq f_{D}$,

$$
\xi_{N} \simeq-\frac{N_{\text {cell }}}{\pi} \tan \frac{\mu}{2}
$$

2 Exercise: measurement of Twiss parameters

One of the possible ways to determine experimentally the Twiss parameters at a given point makes use of a so-called quadrupole scan. One can measure the transverse size of the beam in a profile monitor, called Wire Beam Scanner (WBS), located at a distance L downstream a focusing quadrupole, as a function of the normalized gradient in this quadrupole. This allows to compute the emittance of the beam, as well as the β and the α functions at the entrance of the quadrupole.

Let's consider a quadrupole Q with a length of $l=20 \mathrm{~cm}$. This quadrupole is installed in an electron transport line where the particle momentum is $300 \mathrm{MeV} / c$. At a distance $L=10 \mathrm{~m}$ from the quadrupole the transverse beam size is measured with a WBS, for various values of the current I_{Q}. The maximum value of the quadrupole gradient G is obtained for a current of 100 A, and is $G=1 \mathrm{~T} / \mathrm{m} . G$ is proportional to the current.

Advice: use thin-lens approximation.

2.1 How does the normalized focusing strength K vary with I_{Q} ?

2.2 Let Σ_{1} and Σ_{2} be the 2×2 matrices with the twiss parameters, $\Sigma=\left(\begin{array}{cc}\beta & -\alpha \\ -\alpha & \gamma\end{array}\right)$, at the quadrupole entrance and at the wire scanner, respectively.

- Give the expression Σ_{2} as function of α_{1}, β_{1}, and γ_{1}
- Show that β_{2} can be written in the form: $\beta_{2}=A_{2}(K l)^{2}+A_{1}(K l)+A_{0}$
- Express A_{0}, A_{1}, and A_{2} as a function of L, α_{1}, β_{1}, and γ_{1}

Hint for the next questions: show that if you express β_{2} as

$$
\beta_{2}=B_{0}+B_{1}\left(K l-B_{2}\right)^{2}
$$

you have:

$$
\begin{aligned}
& B_{0}=A_{0}-A_{1}^{2} / 4 A_{2}^{2}=L^{2} / \beta_{1} \\
& B_{1}=A_{2}=L^{2} \beta_{1} \\
& B_{2}=-A_{1} / A_{2}=1 / L-\alpha_{1} / \beta_{1}
\end{aligned}
$$

2.3 The transverse beam r.m.s. beam size is $\sigma=\sqrt{\epsilon \beta}$, where ϵ is the transverse emittance. Express σ_{2} as a function of $K l$ and find its minimum, $(K l)_{\min }$. Give the expression for $\frac{\mathrm{d} \sigma_{2}}{\mathbf{d}(K l)}$.
2.4 How does σ_{2} vary with $K l$ when $\left|K l-(K l)_{\text {min }}\right| \gg 1 / \beta_{1}$?
2.5 Deduce the values of α_{1}, β_{1}, and γ_{1} from the measurement σ_{2}, as a function of the quadrupole current I_{Q}.

