Joint Universities Accelerator School JUAS 2014

Archamps, France, $17^{th} - 21^{st}$ February 2014

Normal-conducting accelerator magnets

Thomas Zickler, CERN

Lecture 3: Numerical design

Which code shall I use?
Introduction to 2D numerical design
How to evaluate the results
A brief outlook into 3D...
Typical application examples

Numerical design

Common computer codes: Opera (2D) or Tosca (3D), Poisson, ANSYS, Roxie, Magnus, Magnet, Mermaid, Radia, FEMM, etc...

Technique is iterative

- calculate field generated by a defined geometry
- adjust geometry until desired distribution is achieved

Advanced codes offer:

- modeller, solver and post-processors
- mesh generator with elements of various shapes
- multiple solver iterations for non-linear material properties
- anisotropic material characterisation
- optimization routines
- combination with structural and thermal analysis
- time depended analysis (steady state, transient)

FEM codes are powerful tools, but be cautious:

Always check results if they are 'physical reasonable' Use FEM for quantifying, not to qualify

Which code shall I use?

Selection criteria:

- The more powerful, the harder to learn
- Powerful codes require powerful CPU and large memory
- More or less user-friendly input (text and/or GUI, scripts)
- OS compatibility and lincense costs

Computing time <u>increases</u> for high accuracy solutions, <u>non-linear</u> problems and <u>time dependent</u> analysis

- Compromise between accuracy and computing time
- Smart modelling can help to minimize number of elements

2D

- 2D analysis is often sufficient
- magnetic solvers allow currents only perpendicular to the plane
- fast

3D

- produces large amount of elements
- mesh generation and computation takes significantly longer
- end effects included
- powerful modeller

Numerical design process

Design process in 2D (similar in 3D):

Create the model (pre-processor or modeller)

Define boundary conditions, set material properties

Calculations (solver)

Visualize and asses the results (post-processor)

Optimization by adjusting the geometry (manually or optimization code)

Creating the model

UNITS

Length Flux density : gauss Field strength : oersted Potential gauss-cm Conductivity : Sicm: Source density: A mm Power Force : kgf Energy : J Mass : kg

PROBLEM DATA

Linear elements XY symmetry Vector potential Magnetic fields 16778 elements 8532 nodes 4 regions

14/Jun/2009 13:56:12 Page 241

Model symmetries

Note: one eighth of quadrupole could be used with opposite symmetries defined on horizontal and y = x axis

Boundary conditions

Material properties

Data source: Thyssen/Germany

Permeability:

- either fixed for linear solution.
- or permeability curve for nonlinear solution
- can be anisotropic
- apply correction for steel packing factor
- pre-defined curves available

Conductivity:

- for coil and yoke material
- required for transient eddy current calculations

Mechanical and thermal properties:

in case of combined structural or thermal analysis

Current density in the coils

Mesh generation

Data processing

Solution

- linear: predefined constant permeability for a single calculation
- non-linear: permeability table for iterative calculations

Solver types

- static
- steady state (sine function)
- transient (ramp, step, arbitrary function, ...)

Solver settings

- number of iterations,
- convergence criteria
- precision to be achieved, etc...

Analyzing the results

With the help of the post-processor, field distribution and field quality and be visualized in various forms on the pre-processor model:

- Field lines and colour contours plots of flux, field, and current density
- Graphs showing absolute or relative field distribution
- Homogeneity plots

Field homogeneity in a dipole

A simple judgment of the field quality can be done by plotting the field homogeneity

$$\frac{\Delta B}{B_0} = \frac{B_y(x, y)}{B_y(0, 0)} - 1$$

$$\frac{\Delta B}{B_0} \leq 0.01\%$$

SH 0.6 mm, SL 12.5 mm, SP 105.0 mm, HH 65.0 mm, HR 8.0 mm, GL 84.0 mm, GH 19.6 mm

PROBLEM DATA Linear elements XY symmetry Vector potentia Magnetic fields Static solution Case 4 of 4 Scale factor 1.09 16778 elements 8532 nodes 4 regions

14/Jun/2009 14:42:25 Page 288

Vector Fields

Field homogeneity in a dipole

Saturation and field quality

1.0E-04

Also very low fields can disturb the field quality significantly

Field quality can vary with field strength due to saturation

Field homogeneity in a quadrupole JUAS

x [mm]

Field homogeneity in a quadrupole

$$\varepsilon = \frac{B_r(x, y)}{B'(0, 0)\sqrt{x^2 + y^2}} - 1$$

Gradient homogeneity along the x-axis

$$\frac{\Delta B'}{B'_0} \le 0.1\%$$

Gradient homogeneity along circular GFR

Saturation and field quality

Saturation

Pole tip design

It is easy to derive perfect mathematical pole configurations for a specific field configuration

In practice poles are not ideal: finite width and end effects result in multipole errors disturbing the main field

The uniform field region is limited to a small fraction of the pole width

Estimate the size of the poles and calculate the resulting fields

Better approach: calculate the necessary pole overhang using:

$$x_{unoptimized} = 2\frac{a}{h} = -0.36 \ln \frac{\Delta B}{B_0} - 0.90$$

- x: pole overhang normalized to the gap
- a: pole overhang: excess pole beyond the edge of the good field region to reach the required field uniformity
- h: magnet gap

Pole optimization

,Shimming' (often done by 'try-and-error') can improve the field homogeneity

- 1. Add material on the pole edges: field will rise and then fall
- Remove some material: curve will flatten
- 3. Round off corners: takes away saturation peak on edges
- 4. Pole tapering: reduces pole root saturation

Rogowsky roll-off

The 'Rogowsky' profile provides the maximum rate of increase in gap with a monotonic decrease in flux density at the surface, i.e. no saturation at the pole edges!

The edge profile is shaped according to:

$$y = \frac{h}{2} + \left(\frac{h}{\pi}\right) \exp\left(\left(\frac{x\pi}{h}\right) - 1\right)$$

$$x_{optimized} = 2\frac{a}{h} = -0.14 \ln \frac{\Delta B}{B_0} - 0.25$$

Pole optimization

Similar technique can be applied for quadrupoles:

$$\frac{x_c}{R} = \sqrt{\frac{1}{2} \left(\sqrt{(\rho^2 + x_d)^2 + 1 + \rho^2 + x_d} \right)}$$

$$\frac{y_c}{R} = \sqrt{\frac{1}{2} \left(\sqrt{(\rho^2 + x_d)^2 + 1 - \rho^2 - x_d} \right)}$$

- x_c : un-optimized resp. optimized pole overhang from dipole
- ρ: normalized good field radius r/R

Pole optimization:

- Tangential extension of the hyperbola
- Additional bump = shim
- Round off sharp edge
- Tapered pole

Multipole expansion

The amplitude and phase of the harmonic components in a magnet are good 'figures of merit' to asses the field quality of a magnet

$$B_{y} + iB_{x} = B_{ref} \sum_{n=1}^{\infty} \left(b_{n} + ia_{n} \right) \cdot \left(\frac{x + iy}{R_{ref}} \right)^{n-1}$$

- The normal (b_n) and the skew (a_n) multipole coefficients are useful:
 - to describe the field errors and their impact on the beam in the lattice, so the magnetic design can be evaluated
 - in comparison with the coefficients resulting from magnetic measurements to judge acceptability of a manufactured magnet
- Due to the finite size of the poles, higher order multipole components appear
- They are intrinsic to the design and called ,allowed' multipoles

$$n = N(2m+1)$$

- n: order of multipole component
- N: order of the fundamental field
- *m*: integer number (m≥1)
- ,Non-allowed' multipoles result from a violation of symmetry and indicate a fabrication or assembly error

Asymmetries

Asymmetries generating 'non-allowed' harmonics

n = 2, 4, 6, ...

n = 3, 6, 9, ...

Comprehensive studies about the influence of manufacturing errors on the field quality have been done by K. Halbach.

n = 4 (neg.)

n = 4 (pos.)

n = 3

n = 2, 3

These errors can seriously affect machine behaviour and must be controlled!

Asymmetry in a C-magnet

- C-magnet: one-fold symmetry
- Since $NI = \oint \overrightarrow{H} \cdot \overrightarrow{dl} = const.$ the contribution to the integral in the iron has different path lengths
- Finite (low) permeability will create lower B on the outside of the gap than on the inside
- Generates 'forbidden' harmonics with n = 2, 4, 6, ... changing with saturation
- Quadrupole term resulting in a gradient around 0.1% across the pole

3D Design

Becomes necessary to study:

- the longitudinal field distribution
- end effects in the yoke
- end effects from coils
- magnets where the aperture is large compared to the length
- spacial field distribution

3D Design

Similar to 2D

Creating the 3D model:

- Use pre-processor or modeller to build geometry
- Profit from symmetries to reduce number of elements
- Difference: all regions with current density have to be modelled completely

Postprocessing:

- Field lines and color contours plots of flux, field, current density
- Graphs showing absolute or relative field distribution
- Homogeneity plots
- Harmonics
- In addition: particle tracking

Magnet ends

Special attention has to be paid to the magnet ends:

- A square end will introduce significant higher-order multi-poles
- Therefore, it is necessary to terminate the magnet in a controlled way by shaping the end either by cutting away or adding material → longitudinal or end shimming

The goal of successful shimming is to:

- · adjust the magnetic length
- improve the integrated field homogeneity
- prevent saturation in a sharp corner
- maintain magnetic length constant across the good field region
- prevent flux entering perpendicular to the laminations inducing eddy currents

Shimming procedure

Prototype Shim

Standard pole end profile

Typically, shimming is an iterative process between magnetic measurments and mechanically adjustment of the shim profile

Case 1: A material problem

Welding seam on stainless-steel vacuum chamber:

GFR radius: 30 mm

Chamber radius: 35 mm

Welding seam diameter: 1 mm

Rel. permeability of 316 LN: < 1.001

A small distortion in the GFR can significantly influence the field quality!

Case 2: An eddy current problem

Eddy currents:

- Because of the electrical conductivity of steel, eddy currents can be generated in solid magnet cores
- This is the reason why pulsed magnets are made of laminated steel
- Nevertheless, some parts remain massive in order to assure the mechanical strength
- Usually they can be ignored, if they don't contribute to carry magnetic flux and hence see no significant field or a possible dB/dt

Problem:

- Magnetic field lagging behind the current
- Time constant τ in the order of few hundred ms
- Missing field: 0.5 %

Explanation:

- Eddy currents in the tension bars welded onto the laminated magnet yoke
- The partly saturated return yoke forces the flux into the tension bars
- Only after eddy current have decayed, the flux can enter into the tension bars and reduce the saturation effects in the laminated yoke
- Increase of the central field after the eddy currents have decayed

Eddy currents - static case

Eddy currents - dynamic behavior JUAS

Eddy currents - dynamic behavior JUAS

Eddy currents - field lag

Case 3: An interference problem

Significant attenuation of the corrector field due to the close presence of two quadrupole yokes

Case 4: Mechanical deformation

- Mechanical deformation due to magnetic pressure can influence the field homogeneity
- Multi-physics models can help to quantify the effect

Field homogeneity calculated for the center line of the magnet with ANSYS magnetic, ANSYS structural + magnetic, and Opera ST 2D

Limitations of numerial calculation

Advantages

- predict behaviour without having the physical object
- for relatively simple cases they are fast and inexpensive

Limitations

- multi-physics model: including all couplings (thermal, mechanical) and phenomena (magnetostriction, magneto-resistivity ...) that may be relevant is very complex and expensive
- off-nominal geometry: random assembly errors can dominate field distribution and quality; often, a large number of degrees-of-freedom and the resulting combinatorial explosion makes Monte Carlo prediction costly
- material properties uncertainty: inhomogeneous properties cannot practically be measured throughout volume; even homogeneous materials can be measured only within 2-5% typical accuracy
- numerical errors: e.g. singularities in re-entrant corners, boundary location of open regions may spoil results; special techniques (special corner elements, BEM) require special skills and time
- **high cost** of detailed 3D models ($\propto \Delta x^{2^{-3}}$); transient simulations increase computing time significantly

Computer simulation targeting >10⁻⁴ accuracy are difficult and expensive

Summary

- A large varity of FE-codes with different features exist the right choice depends of the complexity of the problem
- The FE-models shall be as simple as possible and adapted to the problem to reduce computing time
- Numeric computations should be used to quantify, not to qualify
- Benchmarking the results with measurements is a good practice
- Computer simulations have a lot of advantages, but also their limitations