Problems for the exam of the JUAS 2012 session on "Synchrotron Radiation"

Physical constants:

dielectricity	$\varepsilon_0 = 8.85419 \cdot 10^{-12} \text{ As/Vm}$
velocity of light	$c = 2.997925 \cdot 10^8 \text{ m/s}$
elementary charge	$e = 1.60203 \cdot 10^{-19} \mathrm{C}$
mass of an electron	$m_{\rm e} = 9.1081 \cdot 10^{-31} \rm kg$
	= 510.974 keV
mass of an proton	$m_{\rm p} = 1.67236 \cdot 10^{-27} \mathrm{kg}$
	= 938.211 MeV
Planck's constant	$h = 6.6252 \cdot 10^{-34} \text{ J s}$
	$h = \frac{h}{2\pi} = 1.05443 \cdot 10^{-34} \mathrm{J}\mathrm{s}$
	2π

Problem 1 (Short question, no calculation required)

In order to design a modern storage ring for synchrotron radiation a very small beam emittance is required. Describe shortly the most important design criteria to fulfill this requirements. At least 3 criteria should be specified.

Problem 2

- a) An electron flying through the space with the energy E passes the earth. It is bend by the magnetic field of the earth of $B_{\text{earth}} = 3 \cdot 10^{-5}$ T and emits at this time a photon spectrum with a critical wavelength of $\lambda_c = 450$ nm (i.e. blue light). What is the energy E of the electron.
- b) The electron travels along a trajectory of a total length of L=1000 km. How much energy has the electron lost along this passage due to synchrotron radiation? (The influence of the air has to be neglected, assume pure vacuum)

Problem 3

An electron storage ring with the design energy of E=3.5 GeV contains n identical bending magnets with identical beam optics. We assume that all magnets fulfil the Chasman-Green condition. The horizontal emittance is supposed to be $\varepsilon_x=3\cdot10^{-9}$ m rad.

- a) How many bending magnets are at least required in the lattice?
- b) How long are the bending magnets (i.e. the length of the trajectory in the magnet), if the field strength is B = 1.5 T?

Problem 4

A linac provides an electron beam with very small transverse dimensions. The beam energy is $E_b = 100$ MeV. Behind the linac a permanent magnet undulator with a periode length of λ_u =15 mm is installed. The pole tip field is B = 0.9 T. This undulator produces a coherent radiation with a wavelength of $\lambda = 290$ nm.

- a) Calculate the required gap height of the undulator.
- b) How long is the magnet in order to get a line width of $\Delta \lambda / \lambda = 5 \cdot 10^{-3}$?

GOOD LUCK!