

Joint Universities Accelerator School

Mini-workshop on Superconductong Magnets

Paolo Ferracin

(paolo.ferracin@cern.ch)

European Organization for Nuclear Research (CERN)

Mini-workshop introduction

- Goal: outline design of a superconducting magnet
 - Apply the theory explained during lectures to a practical case
 - Solve a case study using analytical formulas, "back of the envelope" calculation, plots, data, etc. provided during the presentations
 - From the superconducting material to the full magnet
 - Understand physics and reasoning behind design options
 - General dimensions, orders of magnitude of different parameters
- Provide a short report of the results (3 credits)

11 T Nb₃Sn dipole for the LHC collimation upgrade

- Second long shutdown: increase of collimation efficiency
 - New collimation units
 - Some 8.3 T Nb-Ti dipoles replaced by 11 T Nb₃Sn dipoles
 - FNAL/CERN collaboration

• 11 T Nb₃Sn dipole for the LHC collimation upgrade

Introduction

- The second phase of the LHC collimation upgrade will enable proton and ion beam operation at nominal and ultimate intensities.
- To improve the collimation efficiency by a factor 15–90, additional collimators are foreseen in the room temperature insertions and in the dispersion suppression (DS) regions around points 2, 3, and 7.
- To provide longitudinal space of about 3.5 m for additional collimators, a solution based on the substitution of a pair of 5.5-m-long 11 T dipoles for several 14.3-m-long 8.33 T LHC main dipoles (MB) is being considered.

Goal

• Design a Nb₃Sn superconducting dipole with an 60 mm aperture and a operational field (80% of the current limit I_{ss}) at 1.9 K of 11 T.

• 11 T Nb₃Sn dipole for the LHC collimation upgrade

11 T Nb₃Sn dipole for the LHC collimation upgrade

Questions

- Determine and plot critical curves (I_{sc} vs. B) for Nb₃Sn and Nb-Ti at 1.9 K
- Determine coil filling factor λ (J_0 / J_{sc} ratio or $A_{\text{non-Cu cable}}$ / $A_{\text{insulated cable}}$)
- Compute load-line (J_{sc} vs. B) for a
 - Thick shell with $cos\theta$ current density distribution
 - Sector coil (60°) with constant current density
- Determine coil size, operational (80% of $I_{\rm ss}$), conditions, "short-sample" conditions, and margins for both approximations

 - 2. j_{sc_ss} , j_{o_ss} , B_{bore_ss} , B_{peak_ss} 3. j_{sc_op} , j_{o_op} , B_{bore_op} , B_{peak_op} 4. T, j_{sc} , B_{peak} margins
- Compare "short sample", "operational" conditions and margins if the same design uses Nb-Ti superconducting technology with the same coil size w
- Determine e.m forces F_x and F_y and the accumulated stress on the coil midplane in the operational conditions with both the thick shell and sector coil approximation
- Evaluate dimension of collars, iron yoke, and shrinking cylinder, assuming that the support structure is designed to reach 90% of I_{ss}

• 11 T Nb₃Sn dipole for the LHC collimation upgrade

Question

• Determine and plot critical curves (J_{sc} vs. B) for Nb₃Sn and Nb-Ti at 1.9 K

Nb-Ti and Nb₃Sn Critical surfaces

 The critical surface defines the boundaries between superconducting state and normal conducting state in the space defined by temperature, magnetic field, and current densities.

• The surface, determined experimentally, can be fitted with

parameterization curves.

Measurements of the conductor critical current

- The critical current of a conductor is measured by winding a sample of the wire around a sample holder.
- To avoid premature quenching induced by Lorentz forces during ramping, the wire must be well supported
 - Stycast glue may be used to constrain the wire around the holder
- In case of Nb₃Sn wires, a sample holder made of titanium is used.
- Once the wire is cooled-down and placed in a given magnetic field, the current is increased until the transition occurs.

Nb-Ti parameterization curve (LHC dipole)

- Nb-Ti parameterization
 - Temperature and field dependence of B_{C2} and T_{C} are provided by Lubell's formulae:

$$B_{C2}(T) = B_{C20} \left[1 - \left(\frac{T}{T_{C0}} \right)^{1.7} \right] \qquad T_C(B)^{1/1.7} = T_{C0} \left[1 - \left(\frac{B}{B_{C20}} \right)^{1/1.7} \right]$$

where B_{C20} is the upper critical flux density at zero temperature (14.5 T), and T_{C0} is critical temperature at zero field (9.2 K)

• Temperature and field dependence of *Jc* is given by Bottura's formula

$$\frac{J_{C}(B,T)}{J_{C,ref}} = \frac{C_{NbTi}}{B} \left[\frac{B}{B_{C2}(T)} \right]^{\beta_{NbTi}} \left[1 - \frac{B}{B_{C2}(T)} \right]^{\beta_{NbTi}} \left[1 - \left(\frac{T}{T_{C0}} \right)^{1.7} \right]^{\gamma_{NbTi}}$$

where $J_{C,Ref}$ is critical current density at 4.2 K and 5 T (3000 A/mm²) and C_{Nb-Ti} (27 T), α_{Nb-Ti} (0.63), β_{Nb-Ti} (1.0), and γ_{Nb-Ti} (2.3) are fitting parameters.

Nb₃Sn parameterization curve (typical values for HEP magnets)

- Nb₃Sn parameterization
 - Temperature, field, and strain dependence of *Jc* is given by Summers' formula

$$J_{C}(B,T,\varepsilon) = \frac{C_{Nb_{3}Sn}(\varepsilon)}{\sqrt{B}} \left[1 - \frac{B}{B_{C2}(T,\varepsilon)} \right]^{2} \left[1 - \left(\frac{T}{T_{C0}(\varepsilon)} \right)^{2} \right]^{2}$$

$$\frac{B_{C2}(T,\varepsilon)}{B_{C20}} = \left[1 - \left(\frac{T}{T_{C0}(\varepsilon)} \right)^{2} \right] \left\{ 1 - 0.31 \left(\frac{T}{T_{C0}(\varepsilon)} \right)^{2} \left[1 - 1.77 \ln \left(\frac{T}{T_{C0}(\varepsilon)} \right) \right] \right\}$$

$$C_{Nb_{3}Sn}(\varepsilon) = C_{Nb_{3}Sn,0} \left(1 - \alpha_{Nb_{3}Sn} |\varepsilon|^{1.7} \right)^{1/2}$$

$$B_{C20}(\varepsilon) = B_{C20m} \left(1 - \alpha_{Nb_{3}Sn} |\varepsilon|^{1.7} \right)$$

$$T_{C0}(\varepsilon) = T_{C0m} \left(1 - \alpha_{Nb_{3}Sn} |\varepsilon|^{1.7} \right)^{1/3}$$

where α_{Nb3Sn} is 900 for ε = -0.003, T_{Cmo} is 18 K, B_{Cmo} is 27.6 T, and $C_{Nb3Sn,0}$ is a fitting parameter equal to 43100 AT^{1/2}mm⁻² for a Jc=2900 A/mm² at 4.2 K and 12 T.

Assume ε = 0.000

Parameterization curves

References

- M.S. Lubell, "Empirical scaling formulas for critical current and critical fields for commercial NbTi," *IEEE Trans. Magn.*, Vol. MAG-19 No. 3, pp. 754–757, 1983.
- L. Bottura, "A practical fit for the critical surface of NbTi," *IEEE Trans. Appl. Supercond.*, Vol. 10, No. 1, pp. 1054–1057, 2000.
- L.T. Summers, M.W. Guinan, J.R. Miller and P.A. Hahn, "A model for the prediction of Nb₃Sn critical current as a function of field, temperature, strain and radiation damage," *IEEE Trans. Magn.*, Vol. 27, No. 2, pp. 2041–2044, 1991.

- 11 T Nb₃Sn dipole for the LHC collimation upgrade
 - Question
 - Determine coil filling factor λ (J_0/J_{sc} ratio or $A_{\text{non-Cu_cable}}/A_{\text{insulated_cable}}$)

Superconducting cables and coils

J_0/J_{sc} ratio

- The cable design parameters are:
 - Number of wires N_{wire}
 - Wire diameter d_{wire}
 - Cable mid-thickness t_{cable}
 - Cable width w_{cable}
 - (Cu/non-Cu) ratio
 - Insulation thickness
 - Pitch angle
 - To be neglected in this comp.

J_0 vs. J_{sc}

Enlarged and not to scale, for illustration purposes only

DIMENSION FOR CONDUCTOR WITHOUT INSULATION Scale:10:1

Detail A Scale: 20:1	S-2 Glass Braided Sleeve th.=0.075mm
	C-shaped MICA foil (FIROX) th.=0.08mm
	_ Stainless Steel Core mx25µ

UNREACTED CABLE DIMENSIONS	
Strand Type	Nb3Sn
Strand Diameter	0.7 mm
Number of strands	40 (2 x 20)
Width	14.7 mm
Mid-thickness	1.25 mm
Keystone Angle	0.792
(Thin Edge Height)	(1.149 mm)
(Thick Edge Height)	(1.351 mm)
Inner Core	12 mm x 25 μ
INSULATION THICKNESS	
Mica Layer	0.08 mm
Fibre braiding	0.075 mm
Total insulation thickness	0.155 mm (under compression 30MPa: 0.1 mm)

• Cu to non-Cu ratio: 1.2

• 11 T Nb₃Sn dipole for the LHC collimation upgrade

Question

- Compute load-line (J_{sc} vs. B) for a
 - Thick shell with $\cos\theta$ current density distribution
 - Sector coil (60°) with constant current density
- Determine coil size, operational (80% of I_{ss}), conditions, "short-sample" conditions, and margins for both approximations
 - w
 - j_{sc_ss} , j_{o_ss} , B_{bore_ss} , B_{peak_ss}
 - j_{sc_op} , j_{o_op} , B_{bore_op} , B_{peak_op}
 - T, j_{sc} , B_{peak} margins
- ullet Compare "short sample", "operational" conditions and margins if the same design uses Nb-Ti superconducting technology with the same coil size w

Short sample and operational current

- Short sample current
 - The critical current is measured in few different conditions of temperature and field. By fitting the data with known parameterizations, the entire critical surface can be reconstructed.
- If the magnet reaches the maximum current computed through the intersection of the measured critical surface and the load line, i.e. $I_{max} = I_{ss}$, one can declare victory (at least from the quench performance point of view).
- If the magnet maximum current I_{max} is lower that I_{ss} , the quench performance is expressed in term of fraction of short sample (I_{max}/I_{ss}) .
- Usually magnets are designed to operate at I_{op} = 0.8 I_{ss} or below.

Computation of the load line Approximations of practical winding cross-sections

Thick shell

• Current density $J = J_0 \cos \theta$ (A per unit area) on a shell with a finite thickness

Sector coil

• Current density $J = J_0$ (A per unit area) on a a sector with a maximum angle $\theta = 60^{\circ}$ for a dipole

Approximations of practical winding crosssections

Computation of the load line Approximations of practical winding cross-sections

Thick shell

• Current density $J = J_0 \cos\theta$ (A per unit area) on a shell with a finite thickness

$$B_{bore} = -\frac{j_0 \mu_0}{2} w$$

- Where, B_{bore} is the bore field, j_0 is overall current density and w is the coil width
- Ideal case
 - Conductor peak field $B_{peak} = B_{bore}$
 - Perfect field quality
 - No field errors

•
$$b_3 = b_5 = b_7 = \dots = 0$$

- Comparison:
 - For solenoid
 - $B_1 = -j_0 \mu_0 w$
 - Twice more efficient than a dipole

Computation of the load line Approximations of practical winding cross-sections

Sector coil

• Current density $J = J_0$ (A per unit area) on a a sector with a maximum angle $\theta = 60^{\circ}$ for a dipole

$$B_{bore} = -\frac{2j_0\mu_0}{\pi} w\sin(60)$$

- Where, B_{bore} is the bore field, j_0 is overall current density and w is the coil width
- "Less ideal" case

•
$$B_{peak} = B_{bore} \cdot \sim 1.04$$

"Not so perfect" field quality

•
$$b_3 = 0$$

L. Rossi, E. Todesco, "Electromagnetic design of superconducting quadrupoles", Phys. Rev. ST Accel. Beams 9 (2006) 102401.

• With a w/r of $30/30 = 1 \rightarrow 1.04$

Comparison

Roxie		
	mu	1.2566E-06
Degree	alpha	
A/m2	J0	796112011
lambda		0.324
A/m2	Jsc	2455676180
A/mm2	Jsc	2456
m	a1	0.03
m	a2	0.0598
m	W	0.0298
Т	B1	13.726939
	Bpeak/B1	1.04019549
Т	Bpeak	14.2787

• 11 T Nb₃Sn dipole for the LHC collimation upgrade

Question

• Determine e.m forces F_x and F_y and the accumulated stress on the coil mid-plane in the operational conditions with both the thick shell and sector coil approximation

24

E.m. forces and stresses

- The e.m. forces in a dipole magnet tend to push the coil
 - Towards the mid plane in the vertical-azimuthal direction (F_{yy} F_{θ} < 0)
 - Outwards in the radial-horizontal direction $(F_x, F_r > 0)$

E.m. forces and stresses

LHC dipole at 0 T

LHC dipole at 9 T

Displacement scaling = 50

 Usually, in a dipole or quadrupole magnet, the highest stresses are reached at the mid-plane, where all the azimuthal e.m. forces accumulate (over a small area).

E.m. forces and stresses Thick shell approximation

- For a thick shell, with an inner radius a_1 , an outer radius a_2 and an overall current density $j = j_0 \cos \theta$, each block (quadrant) see
 - Horizontal force outwards

$$F_{x} = \frac{\mu_{0}J_{0}^{2}}{2} \left[\frac{7}{54} a_{2}^{3} + \frac{1}{9} \left(\ln \frac{a_{2}}{a_{1}} + \frac{10}{3} \right) a_{1}^{3} - \frac{1}{2} a_{2} a_{1}^{2} \right]$$

Vertical force towards the mid-plan

$$F_{y} = -\frac{\mu_{0}J_{0}^{2}}{2} \left[\frac{2}{27}a_{2}^{3} + \frac{2}{9} \left(\ln \frac{a_{1}}{a_{2}} - \frac{1}{3} \right) a_{1}^{3} \right]$$

• In case of frictionless and "free-motion" conditions, no shear, and infinitely rigid radial support, the forces accumulated on the midplane produce a stress of

$$\sigma_{\theta_{-mid-plane}} = \int_{0}^{\pi/2} f_{\theta} r d\theta = -\frac{\mu_{0} J_{0}^{2}}{2} \frac{r}{2} \left[(a_{2} - r) + \frac{r^{3} - a_{1}^{3}}{3r^{2}} \right]$$

E.m. forces and stresses Sector coil approximation

- For a dipole sector coil, with an inner radius a_1 , an outer radius a_2 and an overall current density j_o , each block (quadrant) see
 - Horizontal force outwards

$$F_{x} = +\frac{2\mu_{0}J_{0}^{2}}{\pi} \frac{\sqrt{3}}{2} \left[\frac{2\pi - \sqrt{3}}{36} a_{2}^{3} + \frac{\sqrt{3}}{12} \ln \frac{a_{2}}{a_{1}} a_{1}^{3} + \frac{4\pi + \sqrt{3}}{36} a_{1}^{3} - \frac{\pi}{6} a_{2} a_{1}^{2} \right]$$

$$F_{y} = -\frac{2\mu_{0}J_{0}^{2}}{\pi} \frac{\sqrt{3}}{2} \left[\frac{1}{12}a_{2}^{3} + \frac{1}{4}\ln\frac{a_{1}}{a_{2}}a_{1}^{3} - \frac{1}{12}a_{1}^{3} \right]$$

• In case of frictionless and "free-motion" conditions, no shear, and infinitely rigid radial support, the forces accumulated on the midplane produce a stress of

$$\sigma_{\theta_{-mid-plane}} = \int_{0}^{\pi/2} f_{\theta} r d\theta = -\frac{\mu_{0} J_{0}^{2}}{2} \frac{r}{2} \left[(a_{2} - r) + \frac{r^{3} - a_{1}^{3}}{3r^{2}} \right]$$

Comparison

Roxie		
	mu	1.2566E-06
Degree	alpha	
A/m2	JO	796112011
lambda		0.324
A/m2	Jsc	2455676180
A/mm2	Jsc	2456
m	a1	0.03
m	a2	0.0598
m	W	0.0298
Т	B1	13.726939
	Bpeak/B1	1.04019549
T	Bpeak	14.2787
N/m	Fx (quad)	4127000
N/m	Fy (quad)	-3294600
N/m	Fx tot	8254000

• 11 T Nb₃Sn dipole for the LHC collimation upgrade

Question

• Evaluate dimension of collars, iron yoke, and shrinking cylinder, assuming that the support structure is designed to reach 90% of I_{ss}

Support structure Collars

- Collars were implemented for the first time in the Tevatron dipoles.
- Since then, they have been used in all but one (RHIC) the accelerator magnets and in most of the R&D magnets.
- They are composed by stainless-steel or aluminum laminations few mm thick.
- By clamping the coils, the collars provide
 - coil pre-stressing;
 - rigid support against e.m. forces (it can be selfsupporting or not);
 - precise cavity (tolerance ± 20 μm).

Support structure Collars

- Collaring procedure
 - Collars are pre-assembled in packs (several cm long) and placed around the coil.
 - The collar laminations are divided in "short" and "long".
 - Since the uncompressed coil is oversized with respect to the collar cavity dimension, at the beginning of the collaring procedure the collars are not locked (open).
 - The coil/collar pack is then introduced into a collaring press.
 - The pressure of the press is increased until a nominal value.
 - Collars are locked with keys, rods or welded, and the press released.
 - Once the collaring press is released, the collar experience a "spring back" due to the clearance of the locking feature and deformation.

Support structure Collars

Collaring of a dipole magnet

Collaring of a quadrupole magnet

Dimension of the support structure Collars

- We assume a 25 mm thick collar
 - Images not in scale

Without iron yoke

With iron yoke

The iron yoke thickness can be estimated with $rB \sim t_{iron}B_{sat}$

Support structure Shell (or shrinking cylinder)

- The cold mass is contained within a shell (or shrinking cylinder).
- The shell constitutes a containment structure for the liquid Helium.
- It is composed by two half shells of stainless steel welded around the yoke with high tension (about 150 MPa for the LHC dipole).
 - With the iron yoke, it contributes to create a rigid boundary to the collared coil.
- If necessary, during the welding process, the welding press can impose the desired curvature on the cold mass.
 - In the LHC dipole the nominal sagitta is of 9.14 mm.

Support structure Shell (or shrinking cylinder)

Construction methods and support structures - Episode II

Support structure Shell (or shrinking cylinder)

- The shell tension provided by the welding may contribute to the overall support of the collared coil.
- An often (SSC, LHC) implemented approach is the line-to-line fit.
 - When the yoke is put around the collared coil, a gap (vertical or horizontal) remains between the two halves; this gap is due to the collar deformation induced by coil pre-stress.
 - After welding, the shell tension closes the gap, and good contact is provided between yoke and collar.
 - After cool-down, despite the higher thermal contraction of the collared coil with respect to iron, the gap remain closed (high rigidity), and the collared coil in good contact with the yoke.
- Aluminum spacer may be used to control the yoke gap.

Dimension of the support structure

- We assume that the shell will close the yoke halves with the same force as the total horizontal e.m. force at 90% of I_{ss}
- We assume an azimuthal shell stress after cool-down of
 - $\sigma_{\text{shell}} = 200 \text{ MPa}$

