Beam Loss Monitors

When energetic beam particles penetrates matter, secondary particles are emitted: this can be e^- , γ , protons, neutrons, excited nuclei, fragmented nuclei...

- ⇒ Spontaneous radiation and permanent activation is produced.
- \Rightarrow Large variety of Beam Loss Monitors (**BLM**) depending on the application.

Protection: Sensitive devices e.g. super-conducting magnets to prevent quenching (energy absorption by electronic stopping)

→ interlock signal for fast beam abortion.

Beam diagnostics: Alignment of the beam to prevent for activation

 \rightarrow optimal transmission to the target.

Accelerator physics: using these sensitive particle detectors.

- > Several devices are used, depending on particle rate and required time resolution
- ➤ Some applications for usage

Basic Idea of Beam Loss Monitors

Basic idea for Beam Loss Monitors B LM:

A loss beam particle must collide with the vacuum chamber or other insertions

- ⇒ Interaction leads to some shower particle:
 - e⁻, γ, protons, neutrons, excited nuclei, fragmented nuclei
- → detection of these secondaries by an appropriate detector outside of beam pipe
- → relative cheap detector installed at many locations

Secondary Particle Production for Electron Beams

Processes for interaction of electrons

For E_{kin} > 100 MeV:

Bremsstrahlungs-photon dominated

$$\Rightarrow \gamma \rightarrow e^+ + e^- \text{ or } \mu^{\pm}, \pi^{\pm} \dots$$

- → electro-magnetic showers
- \Rightarrow excitation of nuclear giant resonances $E_{res} \approx 6$ MeV via (γ, n) , (γ, p) or (γ, np)
 - \rightarrow fast neutrons emitted
 - → neutrons: Long ranges in matter due to lack of ele.-mag. interaction.

For E_{kin} < 10 MeV:

⇒ only electronic stopping (x-rays, slow e⁻).

Energy loss for e^- in copper:

Secondary Particle Production for Proton Beams

⇒ high rate of neutron with broad energy and angular distribution.

Various Beam Loss Monitors at the GSI-Synchrotron

Outline:

- > Physical process from beam-wall interaction
- ➤ Different types of Beam Loss Monitors different methods for various beam parameters
- **➤** Machine protection using BLMs
- > Summary

Scintillators as Beam Loss Monitors

Plastics or liquids are used:

- detection of charged particles by electronic stopping
- detection of **neutrons**by elastic collisions n on p in plastics and fast p electronic stopping.

Scintillator + **photo-multiplier**:

counting (large PMT amplification) or analog voltage ADC (low PMT amp.). Radiation hardness:

plastics 1 Mrad = 10^4 Gy

liquid $10 \text{ Mrad} = 10^5 \text{ Gy}$

Example: Analog pulses of plastic scintillator:

 \Rightarrow broad energy spectrum due to many particle species and energies.

Excurse: Photomultiplier Tube PMT

Electronic solid state amplifier have finite noise contribution

Theoretical limit:
$$U_{eff} = \sqrt{4k_B \cdot R \cdot \Delta f \cdot T}$$

Signal-to-Noise ratio limits the minimal detectable current

Idea: Amplification of single particles with photo-multiplier, sec. e⁻ multiplier or MCPs

photon

and particle counting typically up to $\approx 10^6$ 1/s

Scheme of a photo-multiplier:

> Photon hits photo cathode

> Secondary electrons are

acc. to next dynode $\Delta U \approx 100 \text{ V}$ photo cathode

> Typ. 10 dynodes \Rightarrow 10⁶ fold amplification

Advantage: no thermal noise due to electro static acceleration Typical 1 V signal output

Voltage divider

dynodes

Readout

electron

PIN-Diode (Solid State Detector) as BLM

Solid-state detector: Detection of charged particles.

Working principle

- ➤ About 10⁴ e⁻-hole pairs are created by a Minimum Ionizing Particle (MIP).
- A coincidence of the two PIN reduces the background due to low energy photons.
- ➤ A counting module is used with threshold value comparator for alarming.
- \rightarrow small and cheap detector.

Excurse: Ionization Chamber (IC)

Energy loss of charged particles in gases \rightarrow electron-ion pairs \rightarrow low current meas.

W is average energy for one e^- -ion pair:

Gas	Ionization Potential [eV]	W-Value [eV]
Не	24.5	41.3
Ar	15.7	26.4
H_2	15.6	36.5
N_2	15.5	34.8
O_2	12.5	30.8
CH ₄	14.5	27.3
Air		33.8

Ionization Chamber as BLM

Detection of charged particles **only**.

typically 20 cm

Sealed tube Filled with Ar or N_2 gas:

- > Creation of Ar⁺-e⁻ pairs, average energy W=32 eV/pair
- > measurement of this current
- \triangleright Slow time response due to 100 µs drift time of Ar⁺.

Per definition: direct measurement of dose.

Ionization Chamber as BLM: TEVATRON and CERN Type

TEVATRON, RHIC type

CERN type

 $20\text{cm}, \varnothing 6\text{ cm}$

size $50 \text{ cm}, \varnothing 9 \text{ cm}$

Ar at 1.1 bar

gas N_2 at 1.1 bar

three

of electrodes 61

1000 V

voltage 1500 V

 $3 \mu s$

reaction time 0.3 μs

BF₃ Proportional Tubes as BLM

Detection of neutrons only.

typically 50 cm

Physical processes of signal generation:

- 1. Slow down of fast neutrons by elastic collisions with p
- 2. Nuclear reaction inside BF₃ gas in tube:

10
B + n \rightarrow 7 Li + α with $Q = 2.3$ MeV.

3. Electronic stopping of 7 Li and α leads to signal.

Optical Fibers as BLM

Modification of fiber material is used as a measure of dose.

- > several km long fibers (cheap due to use in tele-communication)
- ➤ 1 ns infra-red laser pulse
- ➤ OTDR (optical time domain reflector): time and amplitude of reflected light ⇒ location of modification.

Comparison of different Types of BLMs

Different detectors are sensitive to various physical processes.

Example: Beam loss for 800 MeV/u O ⁸⁺ with different BLMs at GSI-synchr.:

⇒ Linear behavior for all detectors but quite different count rate:

$$r_{\rm IC} < r_{\rm BF3} < r_{\rm liquid} < r_{\rm plastic}$$

Outline:

- > Physical process from beam-wall interaction
- > Different types of Beam Loss Monitors different methods for various beam parameters
- ➤ Machine protection using BLMs interlock generation for beam abort
- > Summary

Machine Protection Issues for BLM

Losses lead to permanent activation \Rightarrow maintenance is hampered and to material heating (vacuum pipe, super-cond. magnet etc.) \Rightarrow destruction.

Types of losses:

- > Irregular or fast losses by malfunction of devices (magnets, cavities etc.)
 - → BLM as online control of the accelerator functionality and **interlock generation**.
- > Regular or slow losses e.g. by lifetime limits or due to collimator
 - \rightarrow BLM used for alignment.

Demands for BLM:

- ➤ **High sensitivity** to detect behavior of beam halo e.g. at collimator
- **➤** Large dynamic range:
 - → low signal during normal operation, but large signal in case of malfunction
 - \rightarrow detectable without changing the full-scale-range e.g. scintillators from 10^2 1/s up to 10^7 1/s in counting mode.

Monitoring of loss rate in control room and as interlock signal for beam abortion.

Application: BLMs for Quench-Protection

Super-conducting magnets can be heated above critical temperature T_c by the lost beam

- ⇒ breakdown of super-conductivity = 'quenching'.
- \Rightarrow Interlock within 1 ms for beam abortion generated by BLM.

Position of detector at quadruples due to maximal beam size.

High energy particles leads to a shower in forward direction \rightarrow Monte-Carlo simulation.

shower maximum @ 11560cm

Application: BLMs for optimal Tune Alignment

Example: Loss rate at a scraper inside the synchrotron as a function of the tune (i.e. small changes of quadrupole setting):

Beam blow-up by weak resonances can be avoided by proper tune value → very sensitive device for optimization.

Application: BLMs for optimal Tune Alignment

Summary Beam Loss Monitors

Measurement of the lost fraction of the beam:

- > detection of secondary products
- > sensitive particle detectors are used outside the vacuum
- > cheap installations used at many locations

Used as interlock in all high current machines for protection.

Additionally used for sensitive 'loss studies'.

Depending on the application different types are used:

- > Scintillators: sensitive, fast response, largest dynamics, not radiation hard
- > PIN diode: insensitive, fast response, not radiation hard, cheap
- **Electron Multiplier**: medium sensitive, fast response, radiation hard
- > IC: medium sensitive, slow response, radiation hard, cheap
- > BF₃ tube: only neutrons, slow response, radiation hard, expensive
- ➤ Optical fibers: insensitive, very slow, radiation hard, very high spatial resolution.