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Effects of synchrotron radiation on electron 

beam dynamics 

The electrons radiate energy: the equations of motion have a dissipative term; 

the system is non conservative and Liouville’s theorem does not apply; 
 

The emission of radiation leads to damping of the betatron and synchrotron 

oscillations 
 

Radiation is not emitted continuously but in individual photons. The energy 

emitted is a random variable with a known distribution (from the theory of 

synchrotron radiation seen in previous lectures) 
 

This randomness introduce fluctuations which tend to increase the betatron and 

synchrotron oscillations 
 

Damping and growth reach an equilibrium in an electron synchrotron. This 

equilibrium defines the characteristics of the electron beam (e.g. emittance, 

energy spread, bunch size, etc) 
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Effects of synchrotron radiation on electron 

beam dynamics 

We will now look at the effect of radiation damping on the three planes of motion 

 

We will use two equivalent formalisms:  

 damping from the equations of motion in phase space 

 damping as a change in the Courant-Snyder invariant 

The system is non-conservative hence the Courant-Snyder invariant – i.e. the 

area of the ellipse in phase space, is no longer a constant of motion 

 

We will then consider the effect of radiation quantum excitation on the three 

planes of motion 

We will use the formalism of the change of the Courant-Snyder invariant 
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From the lecture on longitudinal motion 

We describe the longitudinal dynamics in terms of the variables (, )  

energy deviation  w.r.t the synchronous particle 

and  time delay w.r.t. the synchronous particle 

A particle in an RF cavity changes energy 

according to the phase of the RF field found in 

the cavity 

)sin()( sRFo teVteVE  

)sin(00 seVUE 

On the other hand, a particle lose energy because of synchrotron radiation, 

interaction with the vacuum pipe, etc. Assume that for each turn the energy losses 

are U0 

The synchronous particle is the particle that arrives at the RF cavity when the 

voltage is such that it compensate exactly the average energy losses U0 

Negative RF slope ensure stability for  > 0 (above transition) 
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RF buckets recap. 
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Equations for the RF bucket 

Linearised equations for the motion in the RF bucket: the phase space  

trajectories become ellipses 
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  angular synchrotron frequency 

 > 0 above transition 
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Radiation damping: Longitudinal plane (I) 
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The energy loss per turn U0 depends on energy E. The rate of change of the 

energy will be given by two terms 
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In presence of synchrotron radiation losses, with energy loss per turn U0, the RF 

fields will compensate the loss per turn and the synchronous phase will be such 

that 
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Assuming E << E and  << T0 we can expand 

additional term responsible for 

damping 
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The derivative 
 

is responsible for the damping of 

the longitudinal oscillations 

Radiation damping: Longitudinal plane (II) 
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Computation of dU0/dE 

We have to compute the dependence of U0 on energy the E (or rather on the 
energy deviation ) 
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 off-energy orbit 
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 Pdt)(U

The energy loss per turn is the integral of the power radiated over the time 

spent in the bendings. Both depend on the energy of the particle. 

This is an elementary geometric consideration on the 

arc length of the trajectory for different energies 



Using the dispersion function 
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Computing the derivative w.r.t.  at  = 0 we get [Sands] 
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Computation of dU0/dE 

To compute dP/d we use the result obtained in the lecture on synchrotron 

radiation, whereby the instantaneous power emitted in a bending magnet with 

field B by a particle with energy E is given by 
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Watch out! There is an implicit dependence of  or B on E. Off energy particles 

have different curvatures  or can experience different B if B varies with x 
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and since P is proportional to E2B2 we can write [Sands] 
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We have the final result 

check this as an exercise ! 
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Computation of dU0/dE 



Radiation damping: Longitudinal plane (III) 

The longitudinal damping time reads 
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 depends only on the magnetic lattice; typically it is a small positive 

quantity 

 is approximately the time it takes an electron to radiate all its energy (with 

constant energy loss U0 per turn) 

For separated function magnets with constant dipole field: 
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Tracking example: longitudinal plane 

Consider a storage ring with a synchrotron tune of 0.0037 (273 turns);  

and a radiation damping of 6000 turns: 

start ¼ of synch period ½ of synch period 1 synch period 

10 synch periods 50 synch periods 

After 50 synchrotron periods (2 

radiation damping time) the longitudinal 

phase space distribution has almost 

reached the equilibrium and is matched 

to the RF bucket 
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Tracking example: longitudinal plane 

Consider a storage ring with a synchrotron tune of 0.0037 (273 turns);  

negligible radiation damping: 

start ¼ of synch period ½ of synch period 1 synch period 

10 synch periods 50 synch periods 

After 50 synchrotron periods the 

longitudinal phase space distribution is 

completely filamented (decoherence). 

Any injection mismatch will blow up 

the beam 
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Transverse plane: vertical oscillations (I) 

We now want to investigate the radiation damping in the vertical plane.  

 

Because of radiation emission the motion in phase space is no longer conservative 

and symplectic, i.e. the area of the ellipse defining the Courant-Snyder invariant is  

changing along one turn. We want to investigate this change. 
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The ellipse in the vertical phase space is upright. The Courant-Snyder invariant 

reads 
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We assume to simplify the calculations that we are in a section of the ring where 
(z = 0), then 



Transverse plane: vertical oscillations (II) 
Effect of the emission of a photon: 
 

The photon is emitted in the direction of the 
momentum of the electron (remember the cone 
aperture is 1/) 
 

The momentum p is changed in modulus by dp 

but it is not changed in direction 
 

 neither z nor z’ change 
 

 and 
 

 the oscillation pattern is not affected since 
 Dz = 0  

 

(see later case where Dx  0 as for the horizontal 
plane) 
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… however the RF cavity must replenish the energy lost by the electron 

Therefore the Courant-Snyder invariant does not change as result of the emission 
of a photon 



Transverse plane: vertical oscillations (III) 

The momentum variation is no longer 

 parallel to the momentum  

this leads to a reduction of the betatron 

 oscillations amplitude 
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In the RF cavity the particle sees a longitudinal accelerating field therefore 

only the longitudinal component is increased to restore the energy 

 acquired in the RF cavity 
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Transverse plane: vertical oscillations (IV) 
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The change in the Courant-Snyder invariant depends on the angle z’ for this  

particular electron. Let us consider now all the electrons in the phase space  

travelling on the ellipse, and therefore having all the same invariant A 

 

For each different z’ the change in the invariant will be different. However 

averaging over the electron phases, assuming a uniform distribution  along  

the ellipse, we have 
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and therefore 

The average invariant decreases. 



The synchrotron radiation emission combined with the compensation 
of the energy loss with the RF cavity causes the damping. 

Transverse plane: vertical oscillations (V) 
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Let us consider now all the photons emitted in one turn. The total energy lost is 
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The RF will replenish all the energy lost in one turn. 

 

Summing the contributions , we find that in one turn: 
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The average invariant decreases exponentially with a damping time z  

z  half of longitudinal damping time always dependent on 1/3. 

 

This derivation remains true for more general distribution of electron in phase 

space with invariant A (e.g Gaussian) 
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Transverse plane: vertical oscillations (VI) 

The betatron oscillations are damped in presence of synchrotron radiation 
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Since the emittance of a bunch of particles is given by the average of the 

square of the betatron amplitude of the particles in the bunch taken ofver the 

bunch distribution in phase space 
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the emittance decays with a time constant which is half the radiation damping 

time 
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Transverse plane: horizontal oscillations (I) 

The damping of the horizontal oscillation can be treated with the same formalism 

used for the vertical plane, e.g. 

 

• consider the electron travelling on an ellipse in phase space with invariant A  

• compute the change in coordinates due to the emission of one photon  

• compute the change of coordinates due to the passage in the RF 

• averaging over all electron with the same invariant 

• compute the change in the average invariant for all photons emitted in one turn 
 

The new and fundamental difference is that in the horizontal plane we do not 

neglect the dispersion, i.e. Dx  0 

 

The reference orbit changes when a quantum is emitted because of Dx in the 

bendings. The electron will oscillate around its new off-energy orbit. In details: 
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Transverse plane: horizontal oscillations (II) 

After the emission of a photon, the physical  position and the angle of the 
electron do not change. However they must be referenced to a new orbit:  
 

This is the off-energy orbit corresponding to the new energy of the electron  
 

With respect to the off-energy orbit, the emission  of a photon appears as an 
offset (and an angle) 

 

 x = 0, x’ = 0 but x + x = 0 (and likewise x’ + x’ = 0) 
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Transverse plane: horizontal oscillations (III) 

We follow the same line as done for the vertical plane. The equations of motion 
in the horizontal plane (x = 0) are 
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Invariant in the horizontal plane 

After the photon emission position and angle do not change but with respect 
to the new (off energy) orbit 
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  xxx   'x'x'x

and we has said that 
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The new invariant in the horizontal plane (with respect to the new orbit) reads 



Transverse plane: horizontal oscillations (IV) 
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The change in the Courant-Snyder invariant due to x and x’  to first order in 
 reads 

As before the change in the Courant Snyder invariant depends on the specific 

 betatron coordinates x and x’
 of the electron . 

 

We want to average of all possible electron in an ellipse with the same Courant- 
Snyder invariant and get 

 

If for each photon emission the quantity  is independent on x and x’, then 
averaging the previous expression over the phases of the betatron oscillations 
would give zero. 
 

However, in the horizontal plane  depends on x in two ways [Sands] 
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Transverse plane: horizontal oscillations (V) 

Let us compute the dependence of the energy  of the photon emitted in the 
horizontal plane on x [Sands]. 

 

Assuming that the emission of photon is described as a continuous loss of 
energy (no random fluctuations in the energy of the photon emitted), we have 
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both P and dt depend on the betatron coordinate of the electron 



Transverse plane: horizontal oscillations (V) 
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Substituting in  
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We get 

The change in the Courant-Snyder invariant depends on the position and  angle  

x and x’’for this particular electron. Let us consider now all the electrons in the  

phase space  travelling on the ellipse, and therefore having all the same invariant A 
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Transverse plane: horizontal oscillations (VI) 
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For each different x and x’ the change in the invariant will be different. 

However averaging over the electron phases, assuming a uniform distribution  

along  the ellipse, we have 

Let us consider all the photons emitted in one turn. The total energy lost is 

 Summing the contributions  in one turn, we find that in one turn: 
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The average invariant can now increase or decrease depending on the sign of  

the previous term, i.e. depending on the lattice. 



Transverse plane: horizontal oscillations (VII) 

Adding the RF contribution (as before assuming Dx = 0 at the RF cavities) 

>0 gives an anti-damping term 
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As in the vertical plane we must add the contribution due to the RF that will  

replenish all the energy lost. 

The change in the horizontal average invariant due to the emission of a photon 

The average horizontal invariant decreases (or increases) exponentially with a 

damping time z .z  half of longitudinal damping time always dependent on 1/3. 

 

This remains true for more general distribution of electron in phase space   

with invariant A (e.g Gaussian) 



Transverse plane: horizontal oscillations (VIII) 

As in the vertical plane, the horizontal betatron oscillations are damped in 
presence of synchrotron radiation 
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Since the emittance of a bunch of particle is given by the average of the square 

of the betatron amplitude of the particles in the bunch 
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the emittance decays with a time constant which is half the radiation damping 

time 
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Damping partition numbers (I) 

The results on the radiation damping times can be summarized as 
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Jx = 1 - ; Jz = 1;  J = 2 + ; 

The Ji are called damping partition numbers, because the sum of the 

damping rates is constant for any  (any lattice) 

Jx + Jz + J = 4 

Damping in all planes requires –2 <  < 1 

(Robinson theorem) 

Fixed U0 and E0 one can only trasfer damping from one plane to another 
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Adjustment of damping rates 

Modification of all damping rates:  

 

 Increase losses U0 

 

 Adding damping wigglers to increase U0 is done in damping 
 rings to  decrease the emittance 

 

Repartition of damping rates on different planes: 

 

 Robinson wigglers: increase longitudinal damping time by 
 decreasing the horizontal damping (reducing dU/dE) 

 

 Change RF: change the orbit in quadrupoles which changes  
 and reduces x 
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Robinson wiggler at CERN 



Example: damping rings 

Damping rings are used in linear colliders to reduce the emittance of the  

colliding electron and positron beams:  

 

The emittance produced by the injectors is too high (especially for positrons 
beams). 

 

In presence of synchrotron radiation losses the emittance is damped   

according to 

The time it takes to reach an acceptable emittance will depend on the transverse 
damping time 

 

The emittance needs to be reduced by large factors in a short store time T. If the 
natural damping time is too long, it must be decreased. 

 

This can be achieved by introducing damping wigglers. Note that damping wigglers 
also generate a smaller equilibrium emittance eq (see later). 
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Example: damping rings 
Using ILC parameters 

 

  i = 0.01 m   f = 10 nm  f / i
 = 10–6  

 

The natural damping time is T ~ 400 ms while it is required that T/x ~ 15, i.e. a 
damping time x ~ 30 ms (dictated by the repetition rate of the following chain of 
accelerators – i.e. a collider usually) 

 

Damping wigglers reduce the damping time by increasing the energy loss per turn 
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With the ILC damping ring data 
 

 E = 5 GeV,  = 106 m, C = 6700 m, 
 

we have 
 

 U0 = 520 keV/turn x = 2ET0/U0 = 430 ms 



Example: damping rings 

The damping time x has to be reduced by a factor 17 to achieve e.g. 25 ms. 

 

Damping wigglers provide the extra synchrotron radiation energy losses  

without changing the circumference of the ring. 

 

The energy loss of a wiggler Ew with peak field B and length L and 

are given by [more on the lecture on wigglers] 

w
2
w

2

43

2
e

w LBE
cm

er

3

1
E 

A total wiggler length of 220 m will provide the required damping time. 

]m[L
]m[

K]GeV[E
07257.0)eV(E w2

u

22

w



mc2

Be
K wu






35/59 R. Bartolini, JUAS, 27-31 January 2014 

or in practical units 



Radiation integrals 
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Many important properties of the stored beam in an electron synchrotron are 

determined by integrals taken along the whole ring: 
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Summary 

Synchrotron radiation losses and RF energy replacement generate a 

damping of the oscillation in the three planes of motion 

The damping times can be modified, but at a fixed energy losses, the sum 

of the damping partition number is conserved regardless of the lattice type 

Radiation damping combined with radiation excitation determine the 

equilibrium beam distribution and therefore emittance, beam size, energy 

spread and bunch length. 

The damping times depend on the energy as 1/3 and on the magnetic lattice 

parameters (stronger for light particles) 
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Quantum nature of synchrotron emission 

The radiated energy is emitted in quanta: each quantum carries an energy  u = ħ; 

 

The emission process is instantaneous and the time of emission of individual  

quanta are statistically independent; 

 

The distribution of the energy of the emitted photons can be computed from  

the spectral distribution of the synchrotron radiation; 

 

The emission of a photon changes suddenly the energy of the emitting   

electron and perturbs the orbit inducing synchrotron and betatron  

oscillations.  

 

These oscillations grow until reaching an equilibrium when balanced by  

radiation damping 

 

Quantum excitation prevents reaching zero emittance in both planes with pure 
damping. 
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From the lecture on synchrotron radiation 

Total radiated power 
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Energy distribution of photons emitted by 

synchrotron radiation (I)  

Energy is emitted in quanta: each quantum carries an energy u = ħ 
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From the frequency distribution of the power radiated 
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We can get the energy distribution of the photons emitted per second: 

n(u) number of photons emitted per unit time with energy in u, u+du 

un(u) energy of photons emitted per unit time with energy in u, u+du 

un(u) must be equal to the power radiated in the frequency range du/ħ at u/ ħ 
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Using the energy distribution of the rate of emitted photons one can compute: 
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Mean square energy of 
photons emitted per second 

Energy distribution of photons emitted by 

synchrotron radiation (II)  
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Introducing the function F() 

we have 
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Let us consider again the change in the invariant for linearized synchrotron 
oscillations 

Quantum fluctuations in energy oscillations (IV) 
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 ssU
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After the emission of a photon of energy u we have 

u

22 2 uudA  

The time position  w.r.t. the synchronous particle does not change 

We do not discard the u2 term since it is a random variable and its average  

over the emission of n(u)du photons per second is not negligible anymore. 

 

Notice that now also the Courant Snyder invariant becomes a random variable!  
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Quantum fluctuations in energy oscillations (II) 

We want to compute the  average of the random variable A over the distribution of  

the energy of the photon emitted 

ppp uNuNdA  22 2  Quantum excitation 

Radiation damping 

We have to compute the averages of u and u2 over the distribution n(u)du of 
number of photons emitted per second. 

 

As observed the term with the square of the photon energy (wrt to the electron 
energy)  is not negligible anymore 
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Quantum fluctuations in energy oscillations (VI) 

Using these expressions… 
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and depends on the location in the ring. We must average over the position in the 

ring, by taking the integral over the circumference. 

Following [Sands] the excitation term can be written as 

R
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The contribution from the term linear in u, after the average over the energy 

distribution of the photon emitted, and the average around the ring reads 





  

U
UuUuTN

c

ds
uNuN 0

ring

0Tt 0
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Quantum fluctuations in energy oscillations (VII) 

The change in the invariant averaged over the photon emission and averaged 

around one turn in the ring  now reads 

ppp uNuNdA  22 2 

The change in the invariant still depends on the energy deviation of the initial 

particle. We can average in phase space over a distribution of particle with the 

same invariant A. A will become the averaged invariant 

puN
A

dt

Ad





 2
22 2





The linear term in u generates a term similar to the expression obtained with the 

radiative damping. We have the differential equation for the average of the 

longitudinal invariant   
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Quantum fluctuations in energy oscillations (VIII) 

puNA  22

2




The average longitudinal invariant decreases exponentially with a damping time  
and reaches an equilibrium at 

This remains true for more general distribution of electron in phase space   

with invariant A (e.g Gaussian) 

2

2
22 


A
 

The variance of the energy oscillations is for a Gaussian beam is 

related to the Courant-Snyder invariant by 
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Quantum fluctuations in energy oscillations (IX) 

For a synchrotron with separated function magnets 
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The relative energy spread depends only on energy and the lattice (namely the 

curvature radius of the dipoles) 
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The equilibrium value for the energy spread reads 
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A tracking example 

Diffusion effect off  

synchrotron period 200 turns; damping time 6000 turns; 

Diffusion effect on  
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Quantum fluctuations in horizontal oscillations (I) 

Invariant for linearized horizontal betatron oscillations 

after the emission of a photon of energy u we have 

Neglecting for the moment the linear part in u, that gives the horizontal  

damping, the modification of the horizontal invariant reads 

Defining the function 

222 ''2 xxxxA  

s

x
U

u
Dxx   

2

s

2
2

xxx

2

x

2

U

u
)'D'DD2D(dA  

2

xxx

2

x 'D'DD2D)s(H  

and 
s

x
U

u
'D'x'x   

As before we have to compute the effect on the invariant due to the  

emission of a photon, averaging over the photon distribution, over the  

betatron phases and over the location in the ring [see Sands]: 

Dispersion invariant 
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Quantum fluctuations in horizontal oscillations (II) 

x

A

dt

Ad






 22 2

The linear term in u averaged over the betatron phases gives the horizontal 

damping 
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Combining the two contributions we have the following differential equation for 

the average of the invariant in the longitudinal plane 

We obtain 
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At equilibrium 

Quantum fluctuations in horizontal oscillations (III) 
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The emittance depends on the dispersion function at bendings, where radiation 

emission occurs 

xx

2

x

22

x
2

A
x  




The variance of the horizontal oscillations is 

Therefore we get the emittance 
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Low emittance lattices strive to minimise 

<H/3> and maximise Jx 
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Quantum fluctuations in vertical oscillations (I) 

z
E

u
z 

0

'

Invariant for linearized vertical betatron oscillations 

after the emission of a photon of energy u the electron angle is changed by 

222 ''2 zzzzA  

With zero dispersion the previous computation will predict no quantum  

fluctuations i.e. zero vertical emittance. 

However a small effect arises due to the  

fact that photons are not exactly  

emitted in the direction of the  

momentum of the electrons 

 

The electron must recoil to preserve the  

total momentum 
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At equilibrium 

Quantum fluctuations in vertical oscillations (II) 
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In practice this effect is very small: the vertical emittance is given by vertical 

dispersion errors and linear coupling between the two planes of motion. 
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the modification of the vertical invariant after the emission of a photon  

reads 

Averaging over the photon emission, the betatron phases and the location  

around the ring: 
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Related beam quantities: beam size 

2/1
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The horizontal beam size has contributions from the variance of betatron 

oscillations and from the energy oscillations via the dispersion function: Combining 

the two contributions we have the bunch size: 

The vertical beam size has contributions from the variance of betatron 

oscillations but generally not from the energy oscillations (Dz = 0). However the 

contribution from coupling is usually dominant 

  2/1
)(szzz   xz k 

In 3rd generation light sources the horizontal emittance is few nm and the 

coupling k is easily controlled to 1% or less, e.g. for Diamond 
 

 x = 2.7 nm; k = 1%  y = 27 pm; 

 x = 120 m   y = 6 m 
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Quantum lifetime (I) 

Electrons are continuously stirred by the emission of synchrotron radiation photons 

It may happen that the induced oscillations hit the vacuum chamber or get outside 

the RF aperture: 

The number of electron per second whose amplitudes exceed a given aperture 

and is lost at the wall or outside the RF bucket can be estimated from the 

equilibrium beam distribution [see Sands] 
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Quantum lifetime (II) 
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quantum lifetime for losses in the transverse plane 

Exponential decay of the number of particle stored 
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  quantum lifetime for losses in the longitudinal plane 

Given the exponential dependence on the 

ratio between available aperture and beam 

size the quantum lifetime is typically very 

large for modern synchrotron light sources, 

e.g. Diamond 
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Related beam quantities: bunch length 

Bunch length from energy spread 

The bunch length also depends on RF parameters: voltage and phase seen by 

the synchronous particle 

dzVdf

c

RFs

z
/2

3





  

 = 1.710–4; V = 3.3 MV;  = 9.6 10–4 z = 2.8 mm (9.4 ps)  

z depends on  

 the magnetic lattice (quadrupole magnets) via  

 the RF slope 

Shorten/Lengthen bunches increasing the RF slope at the 

bunch (Harmonic cavities) 

Shorten bunches decreasing  
(low-alpha optics) 

610
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Bunch lengthening 

Bunch shorthening 

bunch length manipulation: harmonic cavities 

RF cavities with frequency equal to an harmonic of the main RF frequency (e.g. 

3rd harmonic) are used to lengthen or shorten the bunch 
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Summary 

The emission of synchrotron radiation occurs in quanta of discrete energy 
 

The fluctuation in the energy of the emitted photons introduce a noise  

in the various oscillation modes causing the amplitude to grow 
 

Radiation excitation combined with radiation damping determine the equilibrium 

beam distribution and therefore emittance, beam size, energy spread and 

bunch length. 
 

The excitation process is responsible for a loss mechanism described by the 

quantum lifetime 
 

The emittance is a crucial parameter in the operation of synchrotron light 

source. The minimum theoretical emittance depends on the square of the 

energy and the inverse cube of the number of dipoles 
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