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•  Introduction to wake fields/potentials "

•  Instability mechanism!

•  Instability in Linacs !

• Instability in Circular Accelerators!





F = q Ezẑ + Ex − cBy( ) x̂ + Ey + cBx( ) ŷ"# $%≡ F// +F⊥

This force depends on the longitudinal and transverse position of 
the two particles. It is useful to distinguish two effects on the test 
charge : "

"1) a longitudinal force which changes its energy, "

"2) a transverse force which deflects its trajectory. "

Wake Fields and Wake Potentials!
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z"



If we consider a device of length L, we can perform the integral of 
the force acting on the test charge along the longitudinal path and get:"
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U(z) = F//
0

L
∫ ds

M r0, z( ) = F⊥
0

L

∫ ds

the Energy Gain (J):"

These quantities are both function of the distance z between the 
two particles. The transverse wake potential depends also on r0, the 
transverse position of the source charge. "

Note that  the integration is  performed over a  given path of  the 
trajectory."

These quantities, normalised to the charges, are called wake fields"

the Transverse Deflecting Kick (N·m) is:"



€ 

w// z( ) = −
U z( )
q2

w⊥ z( ) = 1
r0

M r0, z( )
q2

Longitudinal wake field 
(Volt/Coulomb)!

Transverse dipole wake field    
(Volt/Coulomb/meter)!

The minus sign in the longitudinal wake field means that the 
test charge loses energy when the wake is positive."

Positive  transverse  wake  means  that  the  transverse  force  is 
defocusing."



Coupling Impedance!
!
The wake fields are generally useful to study the beam dynamics in the 
time domain (for example instabilities in a LINAC). If  we take the 
equation of motion in the frequency domain (a trick generally used to 
study  instabilities  in  circular  accelerators),  we  need  the  Fourier 
transforms of the wake fields. Since these quantities have ohms units 
they are called coupling impedances:"
"
           Longitudinal impedance (Ω)"

Z // ω( ) = 1
c

w// z( )e
iωz
c dz

−∞

∞

∫

Transverse  dipole impedance (Ω/m)!

Z⊥ ω( ) = − i
c
w⊥ z( )e

iωz
c dz

−∞

∞

∫



It is also useful to define the loss factor as the normalised energy lost 
by the source charge q"

k = −U(z = 0)
q2

=
??
w// z = 0( )

Although in general the loss factor is given by the longitudinal wake at 
z=0,  for charges travelling with the light velocity the longitudinal wake 
field is discontinuous at z=0"

The exact relationship between k  and w(z→0)  is given by the  beam 
loading theorem:"
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Causality  requires  that  the 
longitudinal wake field of a charge 
travelling with the speed of light is 
discontinuous in the origin."



z! z’!

λ(z)" dz’!

Wake potentials and energy loss of a bunched distribution "

When we have a bunch with longitudinal density λ(z), we may ask ourselves what is 
the amount of energy lost or gained by a single charge e in the beam"

To this end we calculate the effect on the charge e 
from the whole bunch by means of the convolution 
integral:"

€ 

U(z) = −e w// z'−z( )λ(z')dz'
−∞

∞

∫

Which allows to define the longitudinal wake potential of a distribution"

€ 

W // (z) = −
U(z)
qe

=
1
q

w// z'−z( )λ(z')dz'
−∞

∞

∫
The total energy lost by the bunch is computed summing up the losses of all the 
particles:"

Ubunch =
1
e

U z( )λ(z)dz
−∞

∞

∫ = −q W// z( )λ(z)dz
−∞

∞

∫



The study of the fields requires to solve the Maxwell’s equations in a 
given structure taking the beam current as source of fields. This is a 
quite complicated task for which it has been necessary to develop 
dedicated computer codes, which solve the e.m. problem in the 
frequency or in the time domain. There are several useful codes for 
the em design of accelerator devices, and new ones are developed. 
Examples of codes: CST STUDIO SUITE, GDFIDL, ACE3P, 
ABCI, …"

The wake potentials depend on the particular charge distribution of 
the beam. It is therefore desirable to know what is the effect produced 
by a single charge, i.e. find the Green function (wake field), in order 
to reconstruct the fields produced by any charge distribution. "

Numerical Analysis"

Theoretical Analysis"



Example of longitudinal wake field and coupling impedance:  
space charge 

Even if in the ultra-relativistic limit with γ ⟶ ∞, we have seen that 
there is no space charge effect, we can still define a wake field by 
considering  a  moderately  relativistic  beam  with  γ>>1  but  not 
infinite.  It  turns  out  that  the  space  charge  forces  can  fit  into  the 
definition of wake field, and when that is done, we find that the wake 
depends on beam properties such as the transverse beam radius a and 
the  beam  energy  γ.  Let  us  consider  a  relativistic  beam  with 
cylindrical symmetry and uniform transverse distribution. We have 
already  obtained  the  longitudinal  force  acting  on  a  charge  of  the 
beam travelling inside a cylindrical pipe of radius b:"

F// (r, z) =
−q

4πε0γ
2 1− r

2

a2 + 2 ln b
a

"
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Example of longitudinal wake field and coupling impedance:  
space charge 

Since the space charge forces move together with the beam, they 
are  constant  along  the  accelerator  if  the  beam  pipe  remains 
constant. We can therefore define the longitudinal wake field per 
unit length (V/Cm). To get the longitudinal wake field of a piece of 
pipe, we just multiply by the pipe length. Assuming r→0 (particle 
on axis), and a charge line density given by                      we obtain"λ(z) = q0δ(z)

dw// (z)
ds

=
1

4πε0γ
2 1+ 2 ln b

a
!
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v

∂  w// z( )
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e
iωz
v dz
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Example of longitudinal wake field and coupling impedance:  
finite conductivity of a circular pipe wall (resistive wall) 

w// z( ) =
Lc
4πb

Z0
σ c

1
z 3/2

L"

b"

Z // ω( ) = 1− isgn ω( )"# $%
L
2πb

Z0 ω
2cσ c

Hp: high conductivity 
such that"
 "
δw <<

c2

ω 2b

δw << b

not valid for small z and when ω -> 0!



Example of longitudinal wake field and coupling impedance:  
finite conductivity of a circular pipe wall (resistive wall) 

Impedance comparison 
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Example of wake potential and longitudinal coupling impedance 
for an entire machine: DAΦNE accumulator 
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ωω )()( |||| =
DAΦNE accumulator wake potential of 
 a 2.5 mm Gaussian bunch. 



Short range wake field/potential acts over the bunch length"

•  Vanishes after a 
distance of few bunch 
lengths"

•  Poor frequency 
resolution of Fourier 
transform of coupling 
impedance => broad 
band impedance"

DAΦNE wake potential of 
 a 2.5 mm Gaussian bunch. 



Re[Z]
Im[Z]

Long range wake field/potential acts on 
many bunches/multi-turn"

•  Field oscillates over long distances"
•  Produced by high Q resonant modes "
•  Described by only 3 parameters: Q, ωr and Rs"
•  High peak impedance "



Longitudinal wake field of a resonant mode!

When a charge crosses a resonant structure, it excites resonant modes 
(fundamental and HOMs). Each mode can be treated as an electric RLC 
circuit loaded by an impulsive current."

Just after the charge passage, the capacitor is charged with a voltage 
Vo=qo /C and the electric field is Eso= Vo/lo. "

The  time  evolution  of  the  electric  field  is  governed  by  the  same 
differential equation of the voltage"

011
=++ V

LC
V

RC
V !!!
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The passage of the impulsive current charges only the capacitor, which 
changes its potential by an amount V0. This potential will oscillate and 
decay producing a current flow in the resistor and inductance. "

For  t>0  the  potential  satisfies  the  following  equations  and  initial 
conditions:"

V + 1
RC
V + 1

LC
V = 0

V (t = 0+ ) = q0
C
≡V0

V (t = 0+ ) = q
C
= −

I(0+ )
C

= −
V0
RC

V (t) =V0e
−γ  t cos(ωnt)−

γ
ωn

sin(ωnt)
"
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ωn
2 =ωr

2 −γ 2

γ =
1

2RC

putting z = -ct (z is negative behind the 
source charge),"

w// (z) =
V(z)
q0

= w0e
γ  z/c cos(ωnz / c)+ γ

ωn

sin(ωnz / c)
!

"
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%
&H −z( )
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ω r =
1
LC
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w0 =
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Coupling impedances of a resonant mode!

Rs = R =
wo

2γ
  shunt impedance: "

€ 

Q =
ω r
2γ

 quality factor:"

Transverse Wakefield and Impedance:"

Z⊥ ω( ) = ω
ω

R⊥

1+ iQr
ωr

ω
−
ω
ωr
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Longitudinal Impedance:"
Z|| ω( ) = Rs

1+ iQ ωr

ω
−
ω
ωr

"
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The parameters     ,      and      , that can be evaluated by computer codes, can 
be related to the parameters RLC of the parallel circuit "

€ 

Rs

€ 

Q

€ 

ω r

w⊥(z) = R⊥ωr

Q
eΓ  z/c sin(ωz / c)
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Broad Band Resonator Model! DAΦNE Accumulator Impedance!

Some remarks on the longitudinal impedance of a resonant mode 

Z|| ω( ) = Rs

1+ iQ ωr
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This impedance can be also used as a 
simplified impedance model of a whole 
machine for the short range wake fields 
assuming Q ~ 1 (it is called Broad 
Band Impedance Model) 
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Wake Fields Effects In Linear Accelerators!



U(z) = −e w// (z '− z)
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−
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λ(z)=q/l0#

Z!

Example: Energy lost by a finite uniform beam due to a resonant mode  !

Wake potential?!
Energy spread (Umax-Umin)?!

w// (z) = woe
γ  z/c cos(ωnz / c)+ γ

ωn

sin(ωnz / c)
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Ubunch =
1
e

U
−∞

+∞

∫ (z)λ(z)dz ≈ −q2w0
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Energy loss !



Consider an harmonic oscillator with natural 
frequency  ω,  with  an  external  excitation  at 
frequency Ω:"

€ 

˙ ̇ x +ω 2x = Acos(Ωt)

General solution:"

€ 

x(t) = x free(t) + xdriven (t)

 cos(Ωt)⇒ eiΩt  

x free(t) = ˜ x m
f eiωt

xdriven (t) = ˜ x m
d eiΩt

Instabilities: driven oscillators!

substitution in the diff. equation:"

€ 

(ω 2 −Ω2) ˜ x m
d eiΩt = AeiΩt

xdriven (t) =
A

(ω 2 −Ω2)
eiΩt



The general solution has to satisfy the initial conditions at t=0. In our 
case we assume that the oscillator is at rest for t=0: "

€ 

x free(t = 0) = −xdriven (t = 0)

˜ x m
f = −

A
ω 2 −Ω2

thus we get:"

€ 

x(t) =
A

ω 2 −Ω2 eiΩt − eiωt[ ]

taking only the real part:"

[ ])cos()cos()( 22 tt
A

tx ω
ω

−Ω
Ω−

=



This  expression  is  suitable  for  deriving  the  response  of  the 
oscillator driven at resonance or at frequency very close:"

€ 

ω =Ω+δ,    δ →0
ω = (ω +Ω) /2; ω =ω +δ /2, Ω =ω −δ /2 ωΩ ω#

δ/2# δ/2#

 

x"

 

x"

€ 

limδ→0 x(t) =
At
2ω 

sin(ω t)

x(t) ≈ A
2ωδ

 { cos(ωt)cos(δt / 2)+ sin(ωt)sin(δt / 2)[ ]+

                 - cos(ωt)cos(δt / 2)− sin(ωt)sin(δt / 2)[ ] }

x(t) = A
ωδ

 sin δt
2
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 Single Bunch Beam Break Up in Linacs!

A beam  injected  off-centre  in  a  LINAC,  because  of  the  focusing 
quadrupoles,  executes  betatron  oscillations.  The  displacement 
produces a transverse wake field in all the devices crossed during the 
flight, which deflects the trailing charges. "



In order to understand the effect, we consider a simple model with 
only two charges q1=Ne/2  (source charge = half bunch) and q2=e 
(test charge = single charge)."

q1=Ne/2!q2=e!

λw"

the source charge executes free betatron oscillations:"
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y1(s) = ˆ y 1 cos
ω y
c

s
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ω y
c

=
2π
λw

s"



This force drives the motion of the test charge:"

y2
'' +

ωy

c
!

"
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y2 =
1

β 2Eo

F⊥ z, y1( ) =
Ne2w⊥(z)
2β 2EoLw

ŷ1 cos
ωy

c
s

!

"
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This  is  the  typical  equation  of  a  resonator  driven  at  the  resonant 
frequency.  The  solution  is  given  by  the  superposition  of  the  “free” 
oscillation  and  a  “driven”  oscillation  which,  being  driven  at  the 
resonant frequency, grows linearly with s."

the test charge, at a distance z behind, over a length Lw experiences a 
deflecting force proportional to the displacement y1, and dependent on 
the distance z:"

F⊥ (z, y1) =
Ne2

2Lw
w⊥(z)y1(s)

€ 

e

€ 

Ne /2
w⊥ z( ) = 1

r0

M r0, z( )
q2

betatron motion equation with coherent force!€ 

M r0,z( ) = F⊥
0

Lw
∫ ds = F⊥(r0,z) Lw



At the end of the LINAC of length LL, the oscillation amplitude is 
grown by"

y2 LL( )− ŷ2

ŷ2

"
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ŷ2
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=   cNew⊥(z)LL
4ωy (E0 / e)Lw

€ 

y2
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Balakin-Novokhatsky-Smirnov Damping!

The BBU instability is quite harmful and hard to take under control even 
at high energy with a strong focusing, and after a careful injection and 
steering. "

A simple method to cure it has been proposed observing that the strong 
oscillation amplitude of the bunch tail is mainly due to the “resonant” 
driving force. "

If  the  tail  and  the  head  of  the  bunch  oscillate  with  different 
frequencies, this effect can be significantly removed. "

Let  us  assume  that  the  tail  oscillates  with  a  frequency  ωy+Δωy,  the 
equation of motion becomes:"
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the solution of which is:"

y2 (s) = ŷ2 cos
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by a suitable choice of Δωy, it is possible to fully depress the oscillations 
of the tail. "

y2 (s) = ŷ1 cos
ωy

c
s

!

"
#

$

%
&= y1 s( )

€ 

Δω y =
c2Ne2w⊥(z)
4ω yEoLw

The extra focusing at the tail can be obtained by:"

•  Using an RFQ, where head and tail see a different focusing strength,"

•  Exploit the energy distribution along the bunch which, because of 
the  chromaticity,  induces  a  spread  in  the  betatron  frequencies.  An 
energy spread correlated with the longitudinal position is attainable 
with the external accelerating voltage, or with the wake fields."

ŷ2 = ŷ1
c2Ne2w⊥(z)
4ωyΔωyEoLw

=1



Instabilities in Circular 
Accelerators"



Longitudinal effects on beam dynamics!

•  Robinson instabilities (RF fundamental mode)"
•  Coupled bunch instability (HOMs)"

•    Potential well distortion ! deformation of the longitudinal 
distribution 
•    Longitudinal emittance growth, microwave instability 

Short range wake fields: 

Long range wake fields: 



Distribution 
function 

• At low current the feedback is stable and we find a stationary 
distribution function 
•  At high current the gain is so high that the system becomes 
unstable 

This can be considered a feedback system where the gain depends on the current 

stationary distribution function! perturbation !
(responsible of the instability)!

λ z;t( ) = λ0 z( )+λ1 z;t( )

BEAM%%
perturba-on%

e.m.%fields%

Beam-Wall !
interaction!

Beam-Fields!
interaction!



Short range wake fields at low current:  
Potential well distortion 

The longitudinal motion of a particle in the bunch is confined by the 
potential energy due to the RF voltage and to the wake fields 

Ψ z( ) = 1
L0

eVRF z '( )−U0
#$ %&dz '

0

z

∫
The energy distribution is Gaussian with an RMS energy spread σε0 
not modified by the wake fields. The longitudinal distribution is 
described by an integral equation known as the Haissinski equation 
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Particular solution of Haissinski equation 
No wake field contribution: a linear expansion of VRF around z=0 gives 

( ) !
"

#
$
%

&
−= 2

0

2

0 2
exp

z

zz
σ

λλ λ =
eN
2πσ z0 0s

0c
0z

c
ω

σα
=σ ε

Pure resistive impedance Pure inductive impedance Broad band resonator 

( ) ( ) 2
2
0

2
0

02
0 2

''sinˆ2 z
c
Edzz

L
Vhez

c

szs

α
ωφπ

==Ψ ∫



Typical measured bunch distributions in the DAΦNE Rings. The head is to the left 

positrons electrons 



High current: 
 longitudinal emittance growth, microwave instability 
•  Observe energy spread and bunch length as a function of the current. 

•  σε is almost constant up to a threshold current after which it starts to increase 
with the current according to a given power law (in most cases 1/3 power).  

•  σz starts to increase from the very beginning (potential well distortion), 
and, after the same threshold current, it grows with the same power law. 



Longitudinal emittance growth & microwave instability 

Above threshold: Boussard criterion 
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σ z =
R3 Z /nξ
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ξ =
Iαc

ν s
2E0 /e

Threshold current: 
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ˆ I Z|| n
2πα c E0 /e( )σε

2 ≤1
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ω
ωo

I

εσ

thI

oεσ

31I

€ 

σz =
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remember: 



DAFNE main rings 
Circles:     measurement results. 
Solid line: numerical simulations 

DAFNE Accumulator. 
Dots:         measurement results 
Solid line: numerical simulations. 

Bunch lengthening in DAFNE 

NOTICE 
Numerical simulations performed in 
the design phase, before 
measurements: good impedance 
model of the machine 



•  Single bunch: low broad band impedance Z/n "

Design strategy: proper design of vacuum chamber 

Cures ?"
•  Reduce parasitic loss, taper discontinuities 
•  Landau damping 
"

"

Longitudinal microwave instability is fast but not destructive !



LANDAU DAMPING!
!
•  There  is  a  natural  stabilising  effect  against  the  collective 

instabilities called “Landau Damping”. The basic mechanism relies 
on the fact that if the particles in a beam have a spread in their 
natural frequencies (synchrotron or betatron), their motion can’t be 
coherent for a long time. "

•  The  mechanism  is  in  general  triggered  when  an  infinite  set  of 
identical  systems  oscillates  at  different  frequencies,  spread  over 
some range of values. Under these conditions, if any periodic force 
has  its  frequency  within  the  considered  range,  the  oscillation 
amplitude, averaged over all the systems, instead of growing as one 
should expect, remains constant. "

•  Even if a periodic force pumps energy into the system, this energy 
is  not  converted  into  an  increase  of  the  average  oscillation 
amplitude: the number of particles in resonance with the external 
force  decreases  with  time,  so  that  the  net  contribution  to  the 
average oscillation amplitude remains constant. "



Long range wake fields 

A. Hofmann 



Interaction with RF fundamental mode: 
Robinson Instabilities 

Longitudinal equations of motion of the bunch centre of mass 
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Combined they give a second order differential equation 
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Robinson instability of the fundamental mode 
By including also the 
fundamental mode wakefield 
(beam loading effect) we have  
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Robinson instability ……. 
 

Example 
of 
stability 



Conclusions 
 
•  The longitudinal instability mechanisms in circular accelerators 

are well understood; 
 
•  With an accurate model of the machine impedance one can predict 

the single bunch and multibunch dynamics; 
 
•  Longitudinal single bunch instabilities are not destructive but lead 

to beam heating (increase of energy spread and bunch length) 
 
•  Multibunch instabilities are destructive and require the installation 

of a feedback system on the ring. 
 
•  Overall it is very important an accurate design of the vacuum 

chamber and RF devices 
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Relationship between transverse and longitudinal forces:"

The transverse gradient of the longitudinal force is equal to the 
longitudinal gradient of the transverse force"

 "

 “Panofsky-Wenzel theorem”."
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