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Contents of the 2nd lecture 
 Resonances and  the path to chaos 

 Topology of 3rd  and  4th order resonance 

 Path to chaos and  resonance overlap  

 Dynamic aperture simulations 

 Frequency map analysis 

 NAFF algorithm 

 Aspects of frequency maps 

 Frequency and  d iffusion maps for the LHC 

 Frequency map for lepton rings 

 Working point choice 

 Beam-beam effect 

 Experiments 

 Experimental frequency maps 

 Beam loss frequency maps 

 Space-charge frequency scan 
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 Record the particle coordinates at one 

location (BPM) 

 Unperturbed motion lies on a circle in 

normalized coordinates (simple rotation) 

 

 

 

 

 

 

 

 Resonance condition  corresponds to a 

periodic orbit or in fixed points in phase 

space  

 For a sextupole 

 

 The particle does not lie on a circle! 
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Fixed  points for 3rd order resonance 

 In the vicinity of a third  order 

resonance, three fixed  points 

can be found at 

 For    all three points are 

unstable 

 Close to the elliptic one at          

       the motion in phase 

space is described  by circles 

that they get more and  more 

distorted  to end up in the 

“triangular” separatrix uniting 

the unstable fixed  points  

 The tune separation from the 

resonance (stop-band width) is  
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Topology of an octupole resonance 

 Regular motion near the 

center, with curves getting 

more deformed towards a 

rectangular shape  

 The separatrix passes 

through 4 unstable fixed points, 

but motion seems well 

contained 

 Four stable fixed points exist 

and they are surrounded by 

stable motion (islands of 

stability) 
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Path to chaos 
 When perturbation becomes higher, motion around the separatrix 

becomes chaotic (producing tongues or splitting of the separatrix) 

 Unstable fixed points are indeed the source of chaos when a 

perturbation is added 
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Chaotic motion 
 Poincare-Birkhoff theorem states that 

under perturbation of a resonance only an 

even number of fixed  points survives (half 

stable and  the other half unstable) 

 Themselves get destroyed  when 

perturbation gets higher, etc. (self-similar 

fixed  points) 

 Resonance islands grow and  resonances 

can overlap allowing d iffusion of particles 
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Resonance overlap criterion 
  When perturbation grows, the resonance island  wid th grows 

 Chirikov (1960, 1979) proposed  a criterion for the overlap of two 

neighboring resonances and  the onset of orbit d iffusion  

 The d istance between two resonances is 

 The simple overlap criterion is 

 

 Considering the wid th of chaotic layer and  secondary islands, the “two 

thirds” rule apply 

 The main limitation is the geometrical nature of the criterion (d ifficulty to 

be extended  for > 2 degrees of freedom) 



N
o

n
-l

in
e
a
r 

e
ff

e
ct

s,
 J

U
A

S
, 
Ja

n
u

a
ry

 2
0

1
4
 

10 

Beam Dynamics: Dynamic Aperture 

 Dynamic aperture plots often show the maximum initial values of 

stable trajectories in x-y coord inate space at a particular point in the 

lattice, for a range of energy errors. 

 The beam size (injected  or equilibrium) can be shown on the same plot. 

 Generally, the goal is to allow some significant margin in the design - 

the measured  dynamic aperture is often significantly smaller than the 

pred icted  dynamic aperture. 

 This is often useful for comparison, but is not a complete 

characterization of the dynamic aperture: a more thorough analysis 

is needed  for fu ll optimization. 

5inj 

5inj 

OCS: Circular TME TESLA: Dogbone TME 
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Example: The ILC DR DA 

 Dynamic aperture for  lattice with specified  misalignments, 

multipole errors, and  wiggler nonlinearities 

 Specification for the phase space d istribution of the injected  

positron bunch is an amplitude of Ax + Ay = 0.07m rad  

(normalized) and  an energy spread  of E/E  0.75% 

 DA is larger then the specified  beam acceptance 
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Dynamic aperture including damping 

0.12 ms 0.6 ms 1.2 ms 

1.8 ms 2.4 ms 3 ms 

3.6 ms 4.2 ms 4.8 ms 

E. Levichev et al. PAC2009 

 Including radiation damping and 
excitation shows that 0.7% of the 
particles are lost during the damping 

 Certain particles seem to damp away 
from the beam core, on resonance 
islands 
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Contents of the 2nd lecture 
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 Frequency map for lepton rings 

 Working point choice 

 Beam-beam effect 

 Experiments 

 Experimental frequency maps 
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 Space-charge frequency scan 
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Frequency map analysis 

 Frequency Map Analysis (FMA) is a numerical method  

which springs from the stud ies of J. Laskar (Paris 

Observatory) putting in evidence the chaotic motion in 

the Solar Systems  

 FMA was successively applied  to several dynamical 

systems 

  Stability of Earth Obliquity and  climate stabilization (Laskar, 

Robutel, 1993) 

 4D maps (Laskar 1993) 

 Galactic Dynamics (Y.P and  Laskar, 1996 and  1998) 

 Accelerator beam dynamics: lepton and  hadron rings (Dumas, 

Laskar, 1993, Laskar, Robin, 1996, Y.P, 1999, Nadolski and  

Laskar 2001) 
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 NAFF algorithm 
When a quasi-periodic function     in 

the complex domain is given numerically, it is 

possible to recover a quasi-periodic approximation 

         

                                   

             

in a very precise way over a finite time span      

several orders of magnitude more precisely than 

simple Fourier techniques 

 This approximation is provided by the Numerical 

Analysis of Fundamental Frequencies – NAFF 

algorithm 

 The frequencies and complex amplitudes        are 

computed  through an iterative scheme.  
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Aspects of the frequency map 

 In the vicinity of a resonance the system behaves like a 

pendulum 

 Passing through the elliptic point for a fixed  angle, a fixed  

frequency (or rotation number) is observed  

 Passing through the hyperbolic point, a frequency jump is 

oberved   
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Build ing the frequency map  
 Choose coord inates (x i, y i) with px and  py=0 

 Numerically integrate the phase trajectories through the lattice for 

sufficient number of turns 

 Compute through NAFF Qx and  Qy after sufficient number of turns 

 Plot them in the tune d iagram  
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Frequency maps for the LHC 

Frequency maps for the target error table (left) and  an increased  random 

skew octupole error in the super-conducting d ipoles (right) 
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Diffusion Maps 
J. Laskar, PhysicaD, 1993 

 Calculate frequencies for two equal and  successive time 

spans and  compute frequency d iffusion vector: 

 

 

 

 Plot the initial condition space color-coded with the norm 

of the d iffusion vector 

 Compute a d iffusion quality factor by averaging all 

diffusion coefficients normalized  with the initial conditions 

rad ius 
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Diffusion maps for the LHC 

 Diffusion maps for the target error table (left) and  an increased  random 

skew octupole error in the super-conducting d ipoles (right) 
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Resonance free lattice for CLIC PDR 

 Non linear 
optimization based  
on phase advance 
scan for minimization 
of resonance driving 
terms and tune-shift 
with amplitude 

 

e
ip(nxmx ,c+nymy,c )

p=0

Nc-1

å =
1- cos Nc(nxmx,c +nymy,c )éë ùû

1- cos(nxmx,c +nymy,c )
= 0

Nc (nxmx,c +nymy,c ) = 2kp

nxmx,c +nymy,c ¹ 2 ¢k p
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Dynamic aperture for CLIC DR 

 Dynamic aperture and d iffusion map  

 Very comfortable DA especially in the vertical plane 

 Vertical beam size very small, to be reviewed especially for 

removing electron PDR 

 Need to include non-linear fields of magnets and  

wigglers 
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Frequency maps for the ILC DR 

 Frequency maps enabled  the comparison and  steering of 

d ifferent lattice designs with respect to non -linear dynamics  

 Working point optimisation, on and  off-momentum dynamics, effect 

of multi-pole errors in wigglers 
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Frequency Map for the ESRF 

All dynamics represented  in 

these two plots 

 Regular motion represented  

by blue colors (close to zero 

amplitude particles or working 

point) 

 Resonances appear as 

d istorted  lines in frequency 

space (or curves in initial 

condition space 

 Chaotic motion is represented  

by red  scattered  particles and  

defines dynamic aperture of the 

machine 
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Example for the SNS ring: Working point (6.4,6.3) 

 Integrate a large number of particles 

 Calculate the tune with refined  Fourier 

analysis 

 Plot points to tune space 
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SNS Working point (6.23,5.24) 
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Working Point Comparison 

Tune Diffusion quality factor 
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Working point choice for SUPERB 

S. Liuzzo et al., IPAC 2012  
 Figure of merit for 

choosing best working 
point is sum of d iffusion 
rates with a constant 
added for every lost 
particle 

 Each point is produced 
after tracking 100 
particles 

 Nominal working point 
had to be moved 
towards “blue” area 
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 Long range beam-beam interaction 

represented by a 4D kick-map  

 

 

 

 

 

 

 

 

with 

Beam-Beam interaction 
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Head-on vs Long range interaction 
YP and F. Zimmermann, PRSTAB 1999, 2002 

 Proved dominant effect of long range beam-beam effect 

 Dynamic Aperture (around 6σ) located at the folding of the map 
(indefinite torsion) 

 Dynamics dominated by the 1/r part of the force, reproduced by 
electrical wire, which was proposed for correcting the effect 

 Experimental verification in SPS and installation to the LHC IPs 

Head-on Long range 
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Contents of the 2nd lecture 
 Resonances and  the path to chaos 

 Topology of 3rd  and  4th order resonance 

 Path to chaos and  resonance overlap  

 Dynamic aperture simulations 

 Frequency map analysis 

 NAFF algorithm 

 Aspects of frequency maps 

 Frequency and  d iffusion maps for the LHC 

 Frequency map for lepton rings 

 Working point choice 

 Beam-beam effect 

 Experiments 

 Experimental frequency maps 

 Beam loss frequency maps 

 Space-charge frequency scan 
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 Frequency analysis of turn-
by-turn data of beam 
oscillations produced by a 
fast kicker magnet and  
recorded on a Beam Position 
Monitors 

 Reproduction of the non-
linear model of the 
Advanced Light Source 
storage ring and working 
point optimization for 
increasing beam lifetime 

Experimental frequency maps 
D. Robin, C. Steier, J. Laskar, and L. 

Nadolski, PRL 2000 
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Experimental Methods – Tune scans 

 Study the resonance behavior around d ifferent working points in SPS 

 Strength of individual resonance lines can be identified  from the beam 
loss rate, i.e. the derivative of the beam intensity at the moment of 
crossing the resonance 

 Vertical tune is scanned  from about 0.45 down to 0.05 during a period  of 
3s along the flat bottom 

 Low intensity 4-5e10 p/ b single bunches with small emittance injected   

 Horizontal tune is constant during the same period  

 Tunes are continuously monitored  using tune monitor (tune post-
processed  with NAFF) and  the beam intensity is recorded  with a beam 
current transformer  
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Tune Scans – Results from the SPS 

 Resonances in low γt optics 

 Normal sextupole Qx+2Qy is 

the strongest 

 Skew sextupole 2Qx+Qy 

quite strong  

 Normal sextupole Qx-2Qy, 

skew sextupole at 3Qy and 

2Qx+2Qy fourth order 

visible 

 Resonances in the nominal optics 

 Normal sextupole resonance Qx+2Qy is the 

strongest 

 Coupling resonance (diagonal, either Qx-Qy 

or some higher order of this), Qx-2Qy normal 

sextupole  

 Skew sextupole resonance 2Qx+Qy weak 

compared to Q20 case 

 Stop-band width of the vertical integer is 

stronger (predicted by simulations) 
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Summary 
Appearance of fixed  points (periodic orbits) 

determine topology of the phase space 

Perturbation of unstable (hyperbolic points) opens 

the path to chaotic motion  

Resonance can overlap enabling the rapid  d iffusion 

of orbits 

 Need numerical integration for understanding 

impact of non-linear effects on particle motion 

(dynamic aperture) 

 Frequency map analysis is a powerful technique for 

analyzing particle motion in simulations but also in 

real accelerator experiments 
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Problems 
1) A ring has super-periodicity of 4. Find  a relationship for the 

integer tune that avoids systematic 3rd  and  4th order 

resonances. Generalize this for any super-periodicity. 

2) Compute the tune-spread  at leading order in perturbation 

theory for a periodic octupole perturbation in one plane. 

3) Extend the previous approach to a general multi-pole. 

4) Do skew multi-poles provide 1st order tune-shift with 

amplitude? 


