

1.Definitions

2. Effects of the ionization radiation

- 3. Natural background
- 4. Medical application

5. Rules for workers & zones

Ionizing radiation

- \rightarrow directly ionizing: charged particles (electrons, protons, ...)
- \rightarrow indirectly ionizing: photons, neutrons

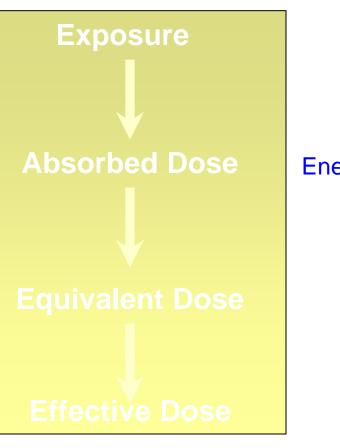
of the order of 10 eV required to ionise an atom

electromagnetic radiation:

$$\mathbf{E} = \frac{\mathbf{hc}}{\lambda} \Longrightarrow \lambda \approx 100\,\mathrm{nm}$$

(hard ultraviolet)

	Ionization potential (eV)	
carbon	11.260	
oxygen	13.618	
potassium	4.341	
iron	7.870	
lead	7.416	

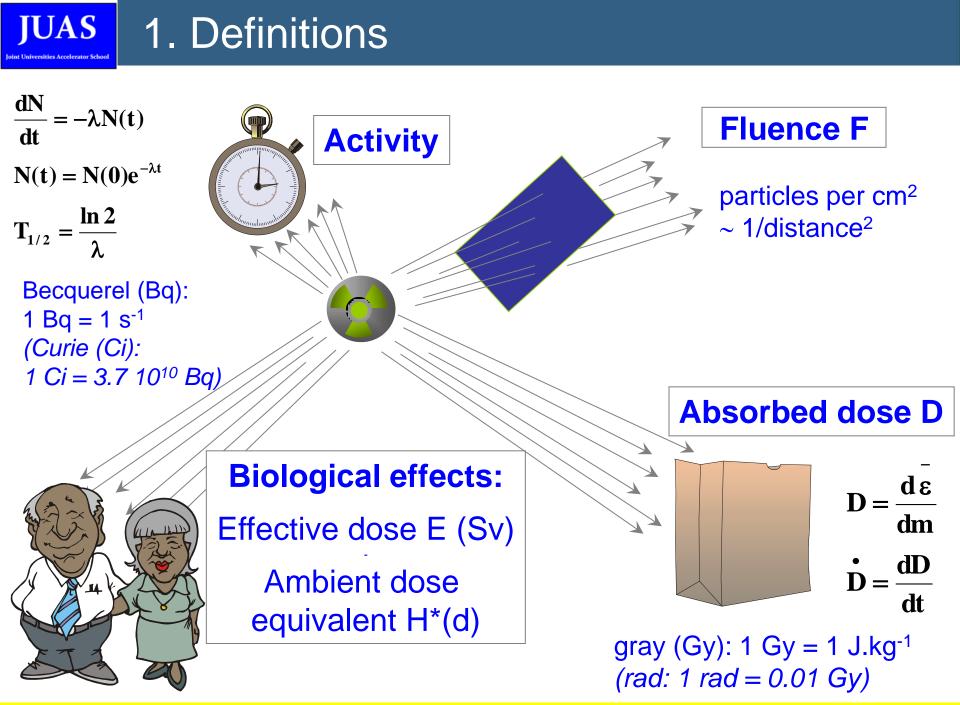


Quantities and units used to quantify **stochastic effects**:

Radiation type weighting factor

JAS

Tissue type weighting factor


Energy absorbed per mass unity (Joule/kg; Gray - Gy).

(Joule/kg; Sievert - Sv).

(Joule/kg; Sievert - Sv).

1 Sv = 100 rem.

1 mSv = 0.1 rem.

Ionising Radiation Dose (Equivalent Dose):

is a measure of the radiation dose absorbed by a tissue depending on the different types of ionizing radiation.

1 mSv = 0,001 Sv (Sievert)

Energy absorbed per kilogram: 1 Sv = 1 Joule / 1 kg (1 Joule = 0,25 calories)

Assuming that the hours per year for a worker is **2000 hours**: $0,001 \text{ Sv} / 2000 \text{ h} = 0,0000005 \text{ Sv/h} = 0,5 \mu \text{Sv/h}$

1. Definitions

ICRP Publication 60 (1991):

Organ dose D_T

JAS

$$D_T = \frac{1}{m_T} \int_{m_T} D dm$$

Tissue or organ equivalent dose H_{T,R}

$$H_{T,R} = w_R \cdot D_{T,R}$$
$$H_T = \sum_R w_R \cdot D_{T,R}$$

Unit of equivalent dose: J.kg⁻¹ Special name: Sievert (Sv) Old unit: rem (1 Sv = 100 rem) Individual organ, e.g. stomach

	and the
Type and energy range of radiation	Radiation
	weighting factor
	W _R
Photons, all energies	1
Electrons and muons, all energies	1
Neutrons	
< 10 keV	10
10 - 100 keV	5
> 100 keV to 2 MeV	10
>2 - 20 MeV	20
> 20 MeV	10
	5
Protons, energy > 2 MeV	5
Alpha particles, fission fragments heavy nuclei	s, 20

1. Definitions

ICRP Publication 60 (1991):

Effective dose E

JAS

$$E = \sum_{T} w_{T} \cdot H_{T}$$

Unit of effective dose: Sv

Dose limits on:

- Effective dose E
- Tissue or organ equivalent dose H_T

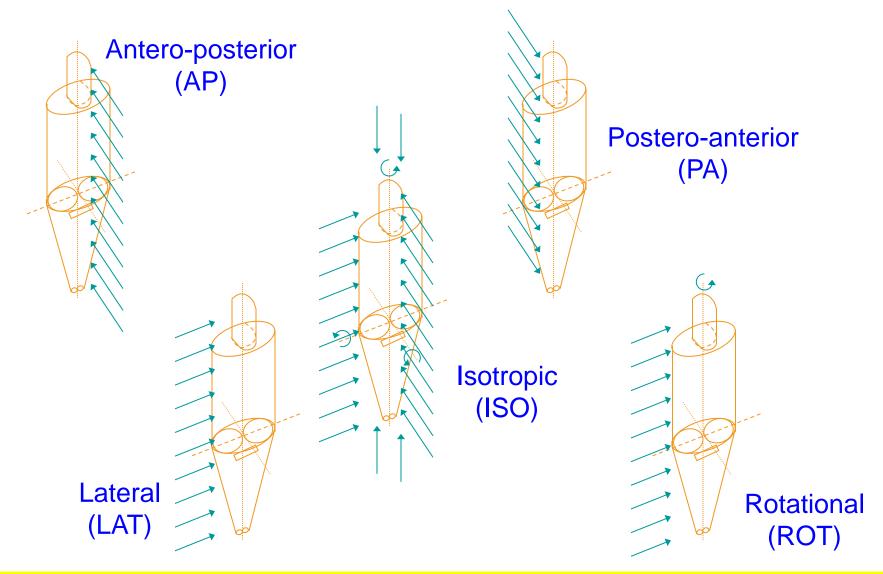
Σ differe	nt organs	
	Tissue or organ	Tissue weighting factor w_T
	Gonads	0.20
	Bone marrow (red)	0.12
	Colon	0.12
	Lung Stomach	0.12 0.12
	Bladder	0.12
ose H _T	Breast	0.05
	Liver	0.05
	Oesophagus	0.05
	Thyroid	0.05
	Skin	0.01
	Bone surface	0.01
	Remainder	0.05

Tissue weighting factor w_T

	ICRP 60	ICRP 103
Gonads	0.20	0.08
Bone marrow (red)	0.12	0.12
Colon	0.12	0.12
Lung	0.12	0.12
Stomach	0.12	0.12
Bladder	0.05	0.04
Breast	0.05	0.12
Liver	0.05	0.04
Oesophagus	0.05	0.04
Thyroid	0.05	0.04
Skin	0.01	0.01
Bone surface	0.01	0.01
Brain	-	0.01
Salivary gland	-	0.01
Remainder	0.05	0.12
Total	1	1

Radiation weighting factor w_R

2.5+18.2 $e^{-[\ln E_n]^2/6}$, $E_n < 1 \text{ MeV}$ 5.0+17.0 $e^{-[\ln 2E_n]^2/6}$, 1 MeV $\leq E_n \leq 50 \text{ MeV}$ 2.5+3.25 $e^{-[\ln 0.04E_n]^2/6}$, $E_n > 50 \text{ MeV}$


neutrons

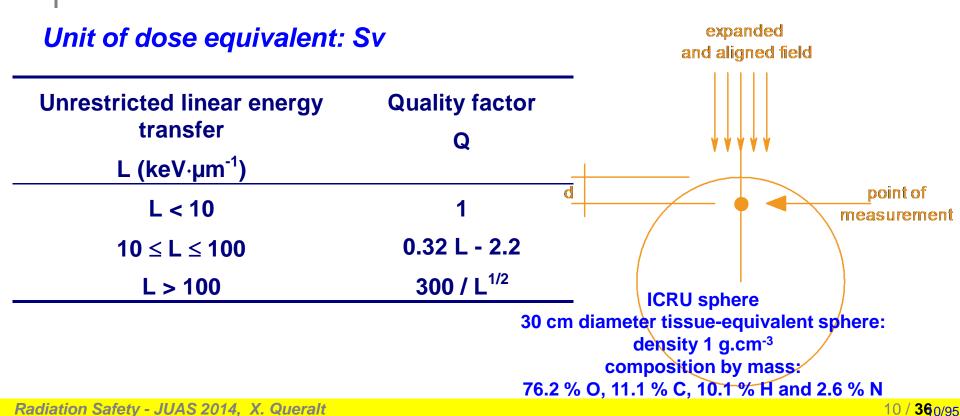
protons: 2

1. Definitions

JAS

ICRP Publication 60 (1991): Irradiation geometries

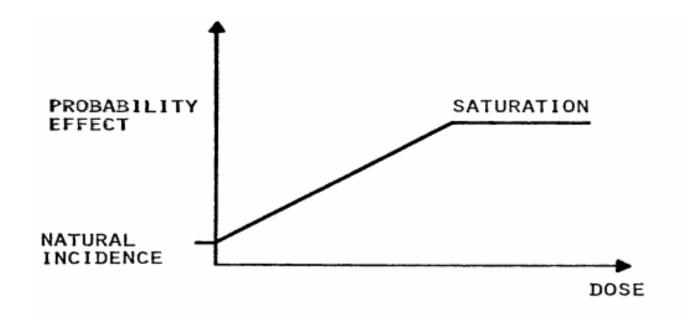
JAS 1. Definitions


ICRU Report 51 (1993):

Protection quantities (ICRP) \rightarrow operational quantities

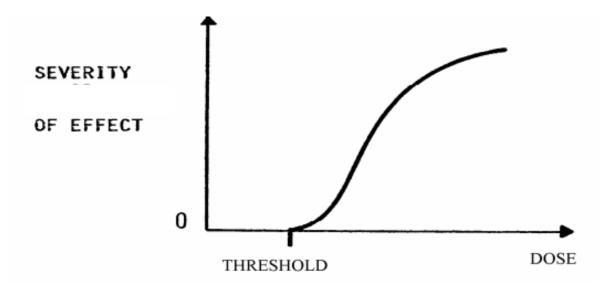
Dose equivalent

Ambient dose equivalent H*(d)

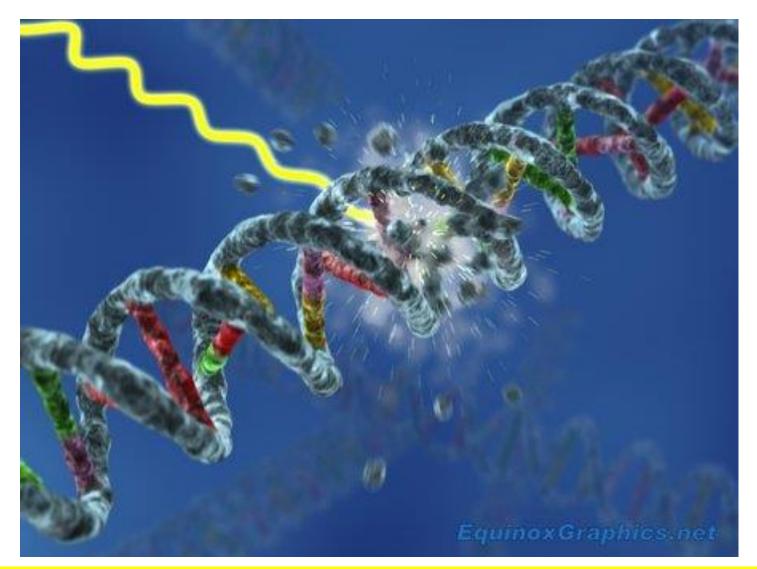

$$H = Q \cdot D \qquad \rightarrow H^*(10) \ (d = 10 \ mm)$$

2. Effects of the ionization radiation

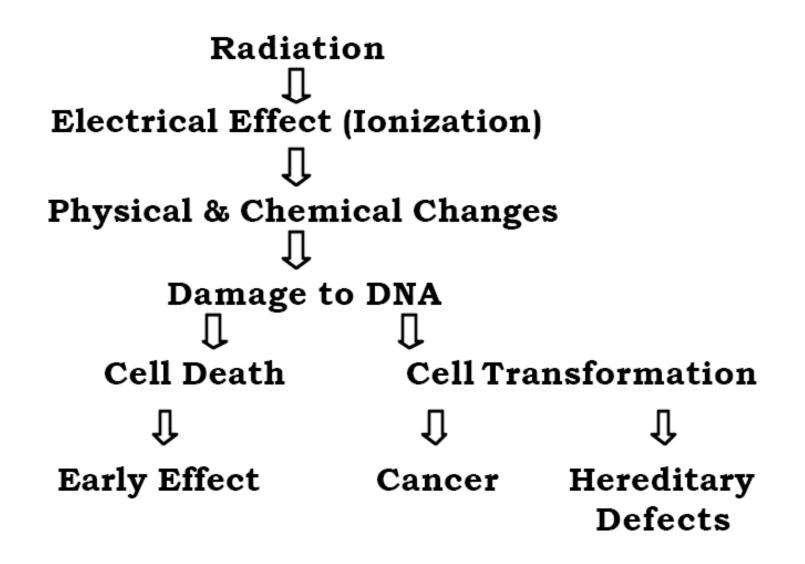
DETRIMENTAL EFFECTS OF IR


Dose Response Curve for a *Stochastic Effect* with no Threshold Dose Below which the Effect Dose not Occur.

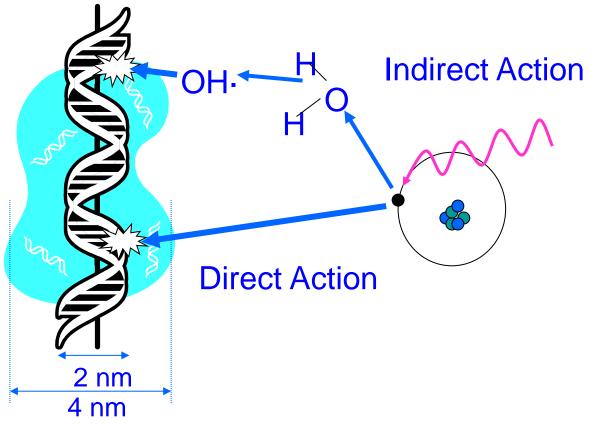
JAS 2. Effects of the ionization radiation


DETRIMENTAL EFFECTS OF IR

Dose Response Curve for a *Deterministic* Effect Exhibiting a Threshold Dose Below which the Effect Dose not Occur.



DNA AS A TARGET


UAS 2. Effects of the ionization radiation

JUAS 2. Effects of the ionization radiation

RADIATION INTERACTION WITH MATTER

The radiation-induced DNA damage can occur through a direct action or an indirect action.

For X- and Gamma-rays: 35% of the damage is direct and 65% indirect.

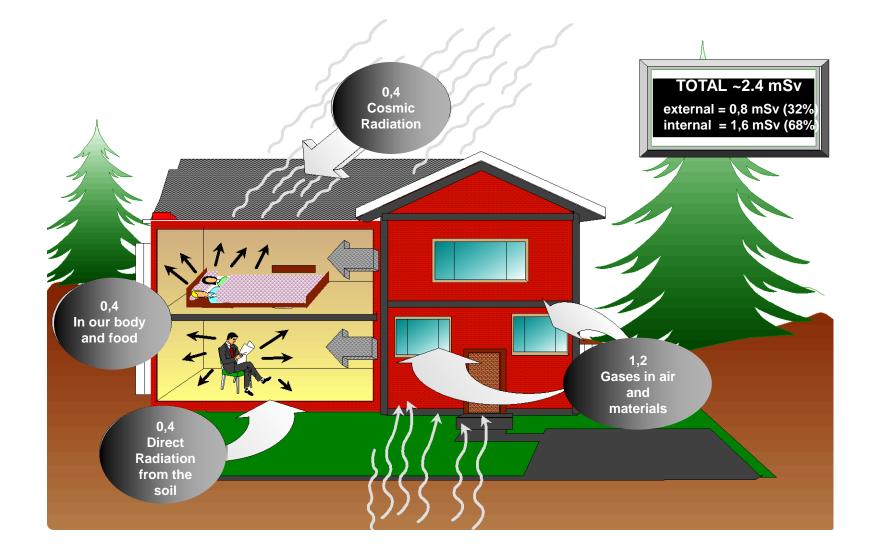
JAS 2. Effects of the ionization radiation **OXIGEN EFFECT** Less oxidant but with a largest $H^* + O_2 \rightarrow HO_2^*$ half life. $HO_2^* + H^* \rightarrow H_2O_2$ $HO_2^* + HO_2^* \rightarrow H_2O_2 + O_2$ $e_{ad}^{-} + O_{2} \rightarrow O_{2}^{-}$ $O_2^- + H_2O \rightarrow HO_2^* + OH^-$

Radiotherapy generates radicals in cellular DNA and adjacent molecules that lead to cell death. Oxygen is important because it intercepts the short-lived free radicals and enhances DNA damage.

2. Effects of the ionization radiation

WHOLE BODY RESPONSE: ADULT

	Dose (Gy)	Prodromic	Latency	Desease manifestation	Death
Bone marrow syndrome	1-5	Few hours	Some days - 3 weeks	Infections, haemorrhage, anaemia	30-60 days (>3Gy)
Gastrointestinal syndrome	5-15	Few hours	2-5 days	Dehydration, Malsnutrition, Infections	10-20 days
Central Nervous system syndrome	> 15	Minutes	Few hours	Convulsions, Ataxia, Coma	1-5 days

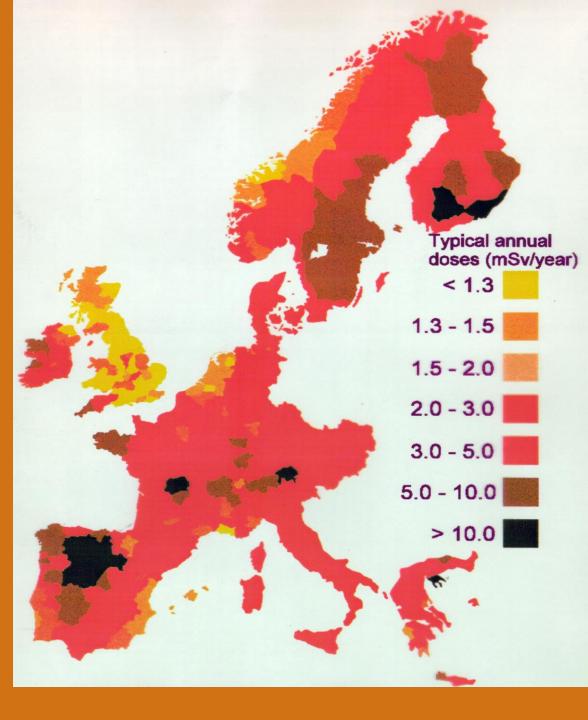

Lethal dose - LD50/30:

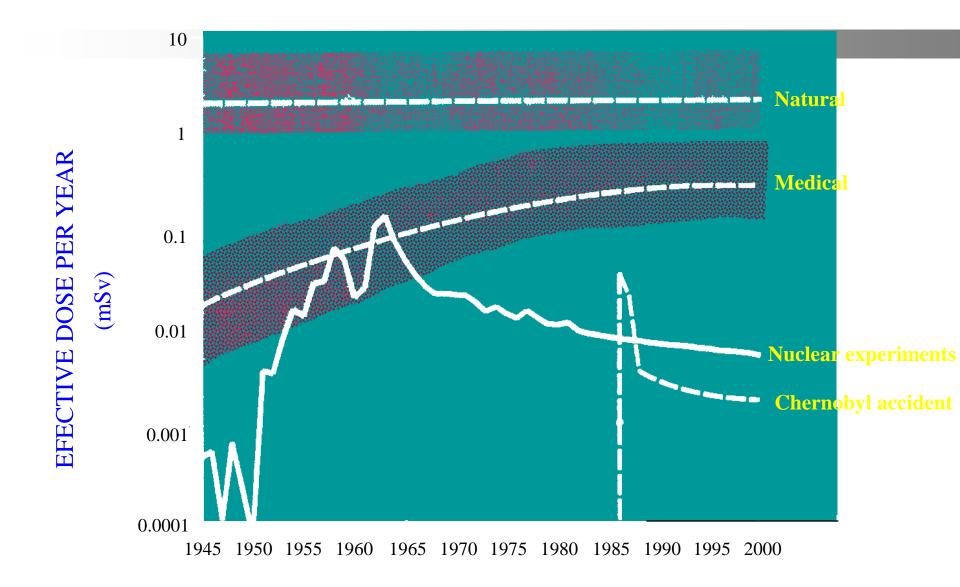
Dose which would cause death to 50% of the population in 30 days.

For humans after whole body irradiation LD50/30 is about 2.5 – 4.5 Gy.

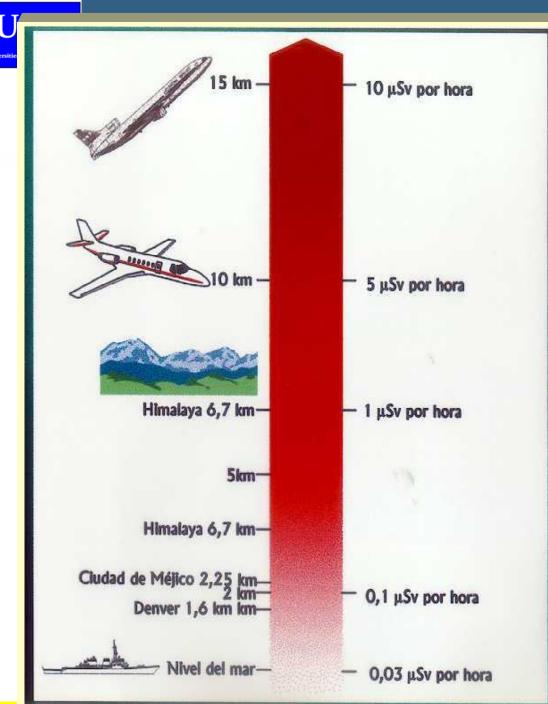
Effect	Population	Exposure period	Probability/Sv
Hereditary effects	Whole population	Lifetime	1 % (all generations)
Fatal cancer	Whole population	Lifetime	5 %
	Working population	Age 18-65	4 %
Health detriment	Whole population	Lifetime	7.3 %
	Working population	Age 18-65	5.6 %

JUAS 3. Natural background

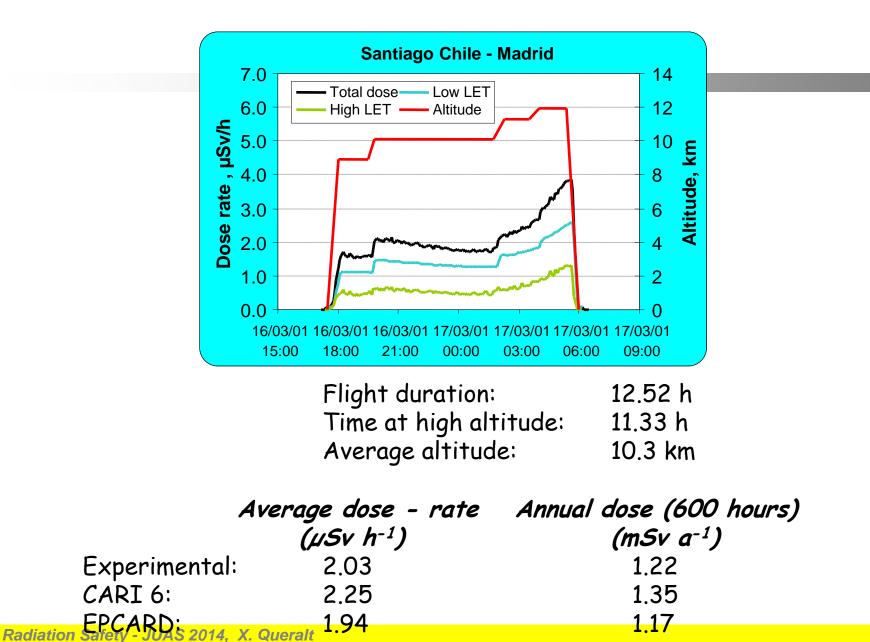



WORLDWIDE AVERAGE DOSES

Source	Effective dose (mSv per year)	Typical range (mSv per year)
External exposure		
Cosmic rays	0.4	0.3-1.0
Terrestrial gamma rays	0.5	0.3-0.6
Internal exposure		
Inhalation	1.2	0.2-10
 Ingestion 	0.3	0.2-0.8
Total	2.4	1–10


Natural background radiation exposure in Europe

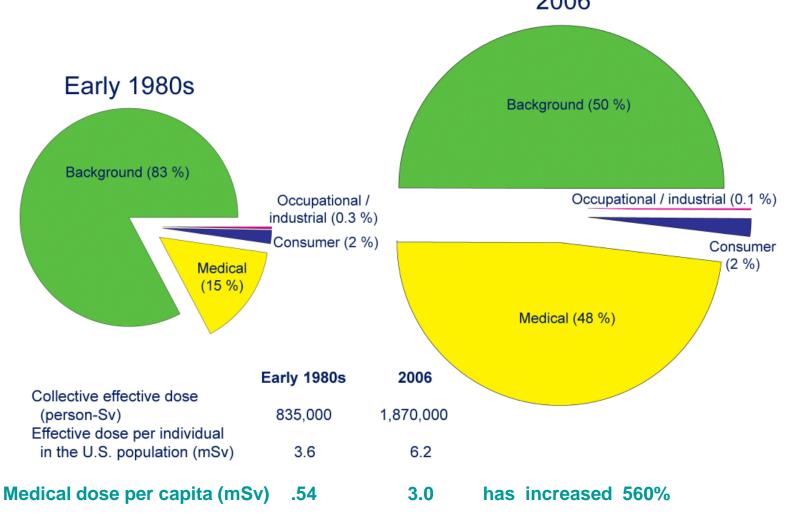
JUAS 3. Natural background


YEARS

3. Natural background

Cosmic Radiation

JAS 3. Natural background



AVERAGE DOSES TO WORKERS

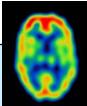
Radiation source	Number of workers	Average dose (mSv per year)
Enhanced natural sources		
 Mining (excluding coal) 	760,000	2.7
Coal mining	3,900,000	0.7
Air travel (crew)	250,000	3
Mineral processing	300,000	1.0
Above ground workplaces	(radon) 1,250,000	4.8
Total	6.500,000	1.7

4. Medical application

Radiation exposure to US

JAS

4. Medical application


RADIATION RISKS IN X-RAY EXAMINATIONS

Examination	Skin dose (mGy)	Effective dose (mGy)	Risk (%)
Urography	30	8	0.04
Lumbar spine	40	5	0.025
Abdomen	10	2.5	0.013
Chest	2	0.25	0.0013
Extremities	3	0.025	0.00013

RADIATION RISKS IN NUCLEAR MEDICINE

Examination	Radiopharmaceutical	Effective dose (mSv)	Risk (%)
Myocardium	TI-201 chloride	23	0.12
Bone	Tc-99m MDP	3.6	0.018
Thyroid Tc-99	m pertechnetate	1.1	0.006
Lungs	Tc-99m MAA	0.9	0.005
Kidney clearance	e Cr-51 EDTA	0.01	0.00005

JAS

4. Medical application

Radiation doses to patients from various types of medical imaging procedures

•With X-rays

JAS

Type of procedure	Average adult effective dose (mSv)	Estimated dose equivalent (n. of chest X- rays)	Approx. Equiv. Period of natural background radiation
Dental X-ray	0.005 – 0.01	0.25 -0.5	< 1.5 day
Chest X-ray	0.02	1	3 days
Mammography	0.4	20	60 days
СТ	2 - 16	100 - 800	300 days – 7.4 years
Interventional fluoroscopy	5 - 70	250 - 3500	2.3 years – 32.2 years

Initiative to reduce unnecessary radiation exposure from medical imaging, FDA. 2010

DOSE LIMITS - PERSONAL

>WORKERS :

- 1. For Exposed Workers A: maximum dose 50 mSv per official year (100 mSv for 5 years)
- 2. For Exposed Workers B: maximum dose 6 mSv per official year
- 3. For None Exposed Workers: 1 mSv per official year
- 4. For women during pregnancy (*): 1 mSv
- 5. For general public: 1 mSv per official year

	Dose Limit		
Aplication	Workers	Public	
Effective Dose	20 mSv/year averaged for 5 years periods ¹	1 mSv/year ²	
Equivalent Dose (/year):			
Cristaline	150 mSv	15 mSv	
Skin ³	500 mSv	50 mSv	
Hands and foot	500 mSv		

- 1 The effective dose will be below 50 mSv any year.
- 2 Under exceptional situations a higher effective dose could be accepted, if the average in 5 years Is not above 1mSv/year.
- 3 These dose limits (equivalent dose) prevent deterministic effects after local exposures.

1 mSv/year is the annual limit for public due to artificial radiations

Exposed Worker

The smoker case

Annual dose (2000 h/year):

< 1 mSv/year Dose per day:

< **12 µSv** Dose rate @ public areas:

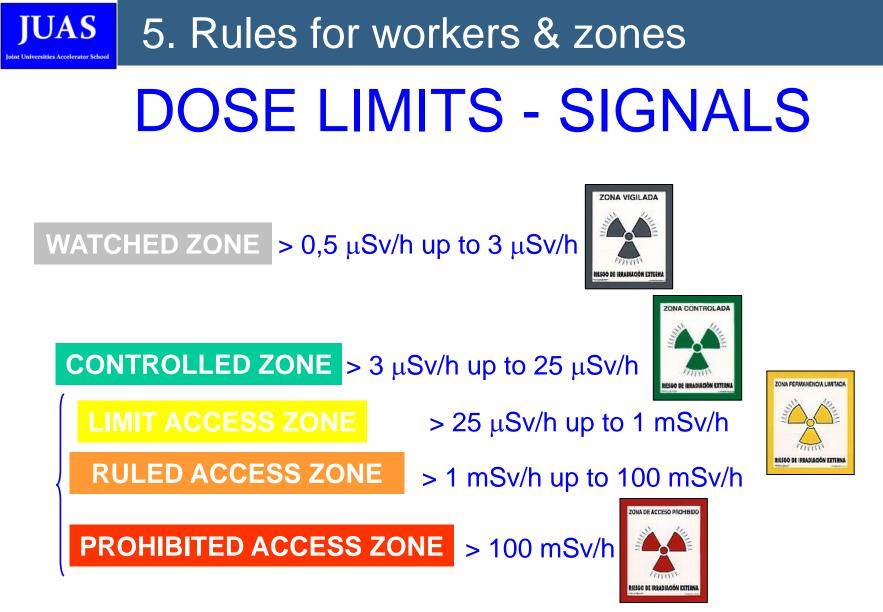
< 0.5 µSv/h

Annual dose (1.5 pack/day):

13 mSv/year Dose per cigarrette:

~ **1.2 µSv/cigarette** Dose rate (5min/cigarette):

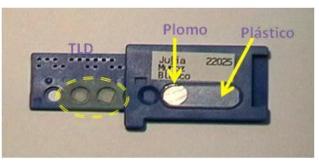
~ 14.4 µSv/h


AREA DOSE LIMITS

> **ZONE CLASIFICATION:**

Controlled Zone: dose higher than 6 mSv (per official year)
 i. Limit Access Zone: dose higher than 100 mSv (for 5 years)
 ii. Ruled Access Zone: high dose rate (short period)
 iii. Prohibited Access Zone: high dose (single exposition)

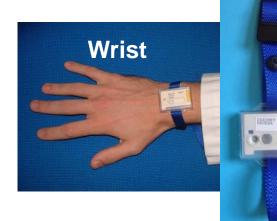
2. Watched Zone: dose lower than 6 mSv (per official year)


Always ANNUAL DOSE is ABOVE the background LEVEL

UAS 5. Rules for workers & zones

Passive personnel dosimeters

- Thermoluminiscense
- Based on detectors TLD-100 (LiF: Mg, Ti):
 - Equivalent dose
 - Range of usage: 10µGy-10Gy.
- The filter system allow to distinguish the energy radiation



Whole body dosimeter

Different passive dosimeters configurations

