#### Lecture 5: Practical matters

#### Plan

- LHC quench protection
- current leads
- accelerator coil winding and curing
- forces and clamping
- magnet assembly, collars and iron
- installation
- some superconducting accelerators



Martin Wilson Lecture 5 slide1 JUAS February 2013

# LHC dipole protection: practical implementation

#### It's difficult! - the main challenges are:

#### 1) Series connection of many magnets

- In each octant, 154 dipoles are connected in series. If one magnet quenches, the combined energy of the others will be dumped in that magnet  $\Rightarrow$  vaporization!
- Solution 1: cold diodes across the terminals of each magnet. Diodes normally block  $\Rightarrow$  magnets track accurately. If a magnet quenches, it's diodes conduct  $\Rightarrow$  octant current by-passes.
- Solution 2: open a circuit breaker onto a resistor (several tonnes) so that octant energy is dumped in ~ 100 secs.

## 2) High current density, high stored energy and long length

- Individual magnets may burn out even when quenching alone.
- Solution 3: Quench heaters on top and bottom halves of every magnet.



Martin Wilson Lecture 5 slide2 JUAS February 2013

### LHC power supply circuit for one octant



- in normal operation, diodes block ⇒ magnets track accurately
- if a magnet quenches, diodes allow the octant current to by-pass
- circuit breaker reduces to octant current to zero with a time constant of 100 sec
- initial voltage across breaker = 2000V
- stored energy of the octant = 1.33GJ

# LHC quench-back heaters

- stainless steel foil 15mm x 25 μm glued to outer surface of winding
- insulated by Kapton
- pulsed by capacitor  $2 \times 3.3 \text{ mF}$  at 400 V = 500 J
- quench delay at rated current = 30msec
  - at 60% of rated current = 50msec
- copper plated 'stripes' to reduce resistance





Martin Wilson Lecture 5 slide4 JUAS February 2013

# Diodes to by-pass the main ring current

Installing the cold diode package on the end of an LHC dipole





Martin Wilson Lecture 5 slide5 JUAS February 2013

#### Current Leads

#### **Optimization**

• want to have low heat inleak, ie low ohmic heating *and* low heat conduction from room temperature. This requires low  $\rho$  and k - but Wiedemann Franz says

$$k(\theta)\rho(\theta) = L_o\theta$$

• so all metals are the same and the only variable we can optimize is the *shape* 

#### Gas cooling helps (recap helium properties Lecture 4)

•  $\Delta$ enthalpy gas / latent heat of boiling = 73.4 - lots more cold in the boil off gas

$$\Delta H = \int_{4.2}^{293} C(\theta) d\theta$$

- so use the enthalpy of the cold gas which is boiled off to cool the lead
- we make the lead as a heat exchanger



Martin Wilson Lecture 5 slide6 JUAS February 2013

## Current lead theory

equation of heat conduction

$$\frac{d}{dx}\left(k(\theta)A\frac{d\theta}{dx}\right) - f\dot{m}C_{p}\frac{d\theta}{dx} + \frac{I^{2}\rho(\theta)}{A} = 0$$

#### where:

f = efficiency of heat transfer to helium gas

 $\dot{m}$  = helium mass flow

 $C_p$  = specific heat of gas

- solution to this equation in 'Superconducting Magnets p 257.
- there is an optimum shape (length/area) which gives the minimum heat leak
  - 'Watts per Amp per lead'
- heat leak is a strong function of the efficiency of heat transfer f to the cold gas



Martin Wilson Lecture 5 slide7

JUAS February 2013

## Heat leak of an optimised lead



 with optimum shape and 100% efficient heat transfer the heat leak is

#### 1.04 mW/Amp

per lead

- with optimum shape and no heat transfer the heat leak is
   47 mW/Amp
- Note the optimum shape varies with the heat transfer efficiency

Martin Wilson Lecture 5 slide8 JUAS February 2013

## Optimum shape of lead



- the optimum shape depends on temperature and material properties, particularly thermal conductivity.
- for a lead between 300K and 4.2K the optimum shape is
- for a lead of annealed high purity copper

$$\left\{\frac{L}{A}\right\}_{optimum} = \frac{2.6x10^7}{I}$$

 for a lead of impure phosphorous deoxised copper (preferred)

$$\left\{\frac{L}{A}\right\}_{optimum} = \frac{3.5x10^6}{I}$$

#### Impure materials make more stable leads



if current lead burns out ⇒ magnet open circuit ⇒ large voltages ⇒ disaster

- for an optimized lead, the maximum temperature is room temperature (at the top of the lead)
- when the lead is not optimized, the temperature of an intermediate region rises above room temperature
- the optimum for pure metals is more sensitive than for impure metals

Martin Wilson Lecture 5 slide10 JUAS February 2013

## Health monitoring



- all leads between the same temperatures and with the same cooling efficiency drop the same voltage at optimum
- for a lead between 300K and 4.2K with with 100% cooling efficiency, the voltage drop at optimum is 75mV
- measure the volts across your lead to see if it is optimised
- if a lead burns out, the resulting high voltage and arcing (magnet inductance) can be disastrous
- monitor your lead and trip the power supply if it goes too high

Martin Wilson Lecture 5 slide11 JUAS February 2013

# High temperature superconductor HTS Current leads

- at temperatures below 50 -70K can use HTS
- material has very low thermal conductivity
- no Ohmic heat generation
- but from room temperature to 50 70 K must have copper leads
- the 50 70 K junction must be cooled or its temperature will drift up and quench the HTS

#### For the HTS section beware of

- overheating if quenches
- fringe field from magnet



Martin Wilson Lecture 5 slide12 JUAS February 2013

### HTS (high temperature superconductor) current leads



- HTS materials have a low thermal conductivity
- make the section of lead below ~ 70K from HTS material
- heat leak down the upper lead is similar, but it is taken at a higher temperature
  - ⇒ less refrigeration power
- LHC uses HTS leads for all main ring magnets
- savings on capital cost of the refrigerator > cost of the leads
- reduced running cost is a continuing benefit

*⇐13kA lead for LHC* 

600A lead for LHC  $\Rightarrow$ 



Martin Wilson Lecture 5 slide13 JUAS February 2013

# Winding the LHC dipoles



Martin Wilson Lecture 5 slide14 JUAS February 2013

## End turns



Martin Wilson Lecture 5 slide15 JUAS February 2013

# Spacers and insulation

- copper wedges between blocks of winding
- beware of voltages at quench
- care needed with insulation, between turns and ground plane
- example: FAIR dipole quench voltage = 340V over 148 turns



Martin Wilson Lecture 5 slide16 JUAS February 2013

# Compacting and curing

 After winding, the half coil, (still very 'floppy') is placed in an accurately machined tool

- Tool put into a curing press, compacted to the exact dimensions and heated to 'cure' the polyimide adhesive on the Kapton insulation.
- After curing, the half coil is quite rigid and easy to handle



Martin Wilson Lecture 5 slide17 JUAS February 2013

# Curing press



Martin Wilson Lecture 5 slide18 JUAS February 2013



#### Finished coils

after curing, the coil package is rigid and relatively easy to handle



Martin Wilson Lecture 5 slide19

JUAS February 2013

## Coils for correction magnets



On a smaller scale, but in great number and variety, many different types of superconducting correction coils are needed at a large accelerator

Martin Wilson Lecture 5 slide20 JUAS February 2013

# Electromagnetic forces in dipoles



$$\underline{F} = \underline{B} \wedge \underline{I}$$

- forces in a dipole are horizontally outwards and vertically towards the median plane
- recap lecture 2 slide 12, for a *thin* winding

total outward force *per quadrant* 

$$F_x = \frac{B_i^2}{2\mu_o} \frac{4a}{3}$$



LHC dipole  $F_x \sim 1.6 \times 10^6 \,\text{N/m} = 160 \,\text{tonne/m}$ 

total vertical force *per quadrant* 

$$F_y = -\frac{B_i^2}{2\mu_o} \frac{4a}{3}$$

- the outward force must be supported by an external structure
- $F_x$  and  $F_y$  cause compressive stress in the conductor and insulation
- apart from the ends, there is no tension in the conductor

for thick winding take ~
mean radius - or better use
formulae of Paolo Ferracin:
Friday Magnet Workshop

#### Collars

**Question:** how to make a force support structure that

- fits tightly round the coil
- presses it into an accurate shape
- has low ac losses laminated
- can be mass produced cheaply

**Answer:** make collars by precision stamping of stainless steel or aluminium alloy plate a few mm thick

- inherited from conventional magnet laminations



press collars over coil from above and below



invert alternate pairs so that they interlock



push steel rods through holes to lock in position

#### Collars

LHC dipole collars support the twin aperture coils in a single unit



12 million produced for LHC





Martin Wilson Lecture 5 slide23

JUAS February 2013

# LHC dipole collars



sub-units of several alternating pairs are riveted together

stainless rods lock the subunits together

Martin Wilson Lecture 5 slide24 JUAS February 2013

# Pre-loading the coil



#### CERN data during manufacture and operation

#### data from Modena et al

|        | after collaring at 293K |       | after yoking at 293K |       | at 1.9K |       | at 1.9K and 8.3T |       |
|--------|-------------------------|-------|----------------------|-------|---------|-------|------------------|-------|
|        | inner                   | outer | inner                | outer | inner   | outer | inner            | outer |
| MBP2N2 | 62Mpa                   | 77Mpa | 72Mpa                | 85Mpa | 26MPa   | 32MPa | 2MPa             | 8Mpa  |
| MBP2O1 | 51MPa                   | 55MPa | 62MPa                | 62MPa | 24MPa   | 22MPa | 0MPa             | 2MPa  |

Collars and end plate
(LHC dipole)





use kapton layers



Martin Wilson Lecture 5 slide26 JUAS February 2013

photo CERN



- pushed into place using the collaring press
- **BUT** pure iron becomes brittle at low temperature
- tensile forces are therefore taken by a stainless steel shell which is welded around the iron, while still in the press
- stainless shell also serves as the helium vessel

## Adding the iron



Martin Wilson Lecture 5 slide27

JUAS February 2013

# Compressing and welding the outer shell





Martin Wilson Lecture 5 slide28 JUAS February 2013

## Dipole inside its stainless shell



Martin Wilson Lecture 5 slide29 JUAS February 2013

## Cryogenic supports



'feet' used to support cold mass inside cryostat (LHC dipole)



- long path length in short distance
- mechanical stiffness of tubes
- by choosing different material contractions can achieve zero thermal movement

Martin Wilson Lecture 5 slide30 JUAS February 2013



## Complete magnet in cryostat



Martin Wilson Lecture 5 slide31

JUAS February 2013

#### **LHC DIPOLE: STANDARD CROSS-SECTION**

CERN AC/DI/MM - HE107 - 30 04 1999



Martin Wilson Lecture 5 slide32 JUAS February 2013

# Make the interconnections - electrical



Martin Wilson Lecture 5 slide33 JUAS February 2013

# Make interconnections - cryogenic



Martin Wilson Lecture 5 slide34 JUAS February 2013

# Connect to the cryogenic feed and current leads



Martin Wilson Lecture 5 slide35

JUAS February 2013

### The Fermilab Tevatron



the world's first superconducting accelerator

Martin Wilson Lecture 5 slide36 JUAS February 2013

## Tevatron dipole



Martin Wilson Lecture 5 slide37

JUAS February 2013

#### Hera



Martin Wilson Lecture 5 slide38 JUAS February 2013



Martin Wilson Lecture 5 slide39 JUAS February 2013

## RHIC Dipole



Martin Wilson Lecture 5 slide40 JUAS February 2013

## Facility for Antiproton and ion research FAIR



Martin Wilson Lecture 5 slide41 JUAS February 2013

#### FAIR: two rings in one tunnel



Martin Wilson Lecture 5 slide42 JUAS February 2013



#### Problem of the sagitta in SIS300





must be short because of sagitta

$$\Rightarrow$$
 B = 6T

must use double layer coil



curved magnet has no sagitta, can be long, save space of end turns

$$\Rightarrow$$
 B = 4.5T

can use single layer coil



Discorap curved dipole INFN Frascati / Ansaldo



superconducting dipoles

- $\Rightarrow$  high field
- $\Rightarrow$  tight bending radius

Sextupole

- ⇒ compact size
- $\Rightarrow$  transportability

Martin Wilson Lecture 5 slide44 JUAS February 2013



# Helios dipole



- bent around 180°
- rectangular block coil section
- totally clear gap on outer mid plane for emerging X-rays (12 kW)

Martin Wilson Lecture 5 slide45

JUAS February 2013

#### Cancer therapy by charged particle beams



- photons (X-rays) deposit most energy at surface (skin)
- protons deposit most energy at depth
- adjust energy to make depth = tumour
- carbon ions are even better



Martin Wilson Lecture 5 slide46 JUAS February 2013

#### Cyclotron: the most popular source for proton therapy

#### Synchrocyclotron



- particles spiral outwards as their energy increases
- field decreases with radius ⇒ focussing
- particles get out of synchronism because field decreases and their (relativistic) mass increases
- ramp the rf frequency to keep in synchronism
- must be pulsed ⇒ low average beam current

#### Isochronous cyclotron



- focussing provided by azimuthally varying field AVF
- field can increase with radius to keep pace with relativistic mass increase
- synchronism at all radii
- continuous de beam

Martin Wilson Lecture 5 slide47 JUAS February 2013



# Cyclotrons for proton therapy

#### **IBA Proteus 235**

Isochronous cyclotron 235MeV conventional magnet 1.7 - 2.2T 220 tonne

#### Mevion

Synchrocyclotron 250MeV superconducting magnet 8.9T 20 tonne

#### Varian / Accel

Isochronous cyclotron 250MeV superconducting magnet 2.4 - 3.1T 90 tonne



Martin Wilson Lecture 5 slide48 JUAS February 2013

## Practical Matters: concluding remarks

- LHC quench problems come from series connection of many magnets and high current density
  - diodes across each coil, dump resistor and quench heaters
- current leads should be gas cooled and the optimum shape for minimum heat leak,
  - shape depends on the material used
  - impure material is less likely to burn out
  - use HTS to reduce heat leak at the bottom end
- making accelerator magnets is now a well established industrial process
  - winding  $\Rightarrow$  compact to exact size  $\Rightarrow$  heat to cure adhesive
  - fit collars  $\Rightarrow$  compress to required stress  $\Rightarrow$  lock in place
  - fit iron  $\Rightarrow$  add outer shell  $\Rightarrow$  compress to size  $\Rightarrow$  weld
  - assemble in cryostat  $\Rightarrow$  install in tunnel  $\Rightarrow$  make interconnects
- in recent years all the largest accelerators (and some small ones) have been superconducting

what comes next up to you

customer helpline martin.n.wilson@btinternet.com

Martin Wilson Lecture 5 slide49 JUAS February 2013