Measurement of Beam Profile T
BN o LM T . W

The beam width can be changed by focusing via quadruples.
Transverse matching between ascending accelerators is done by focusing.

— Profiles have to be controlled at many locations.
Synchrotrons: Lattice functions A(s) and D(s) are fixed = width oand emittance g are:

2
03 (8) = xSy (8) + (D(S) A;)j and oy (s) = &y, (s)

LINACS: Lattice functions are ‘smoothly’ defined due to variable input emittance.

A great variety of devices are used:
» Optical techniques: Scintillating screens (all beams),

synchrotron light monitors (e—), optical transition radiation (e—),
residual gas fluorescence monitors (protons), residual gas monitors (protons).

» Electronics techniques: Secondary electron emission (SEM) grids, wire scanners (all)
grids with gas amplification MWPC (protons)
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Outline:
» Scintillation screens:
emission of light, universal usage, limited dynamic range
» SEM-Grid
» Wire scanner
» lonization Profile Monitor and Beam Induced Fluorescence Monitor
» Optical Transition Radiation
» Synchrotron Light Monitors
» Summary

Peter Forck, JUAS Archamps 2 Beam Profile Measurement




Early Usage of Scintillation Screen by E. Rutherford Oj

e

B\ J . T . W /7 TEERSSE ™
Scintillation screens are used from the ‘early days’ on e.g. by Ernest Rutherford in 1911:

m pudding modg¥

222Rn decay
—‘beam’ of o

with 5.5 MeV
o< particle
‘ emitter
~e
Detecting screen Slit R
ZnS:Ag >
;

\ )
B

Rutherford or ‘Geiger-Marsden Experiment’:
»>Nuclei are made of point-like charges

ZnS:Ag

> light emitter excited by the energy release by charged particle — sintillation
» today known as Phosphor P11 and is used in TV tubes etc.
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Scintillation Screen i

B\ " A\ . N
Particle’s energy loss in matter produces light

— the most direct way of profile observation as used from the early days on!

scintillator screen

beam

window ‘:, ..

window

support

\ /

CCD camera

movement

Pneumatic

Pneumatic feed-through
with @70 mm screen :

GSN
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Example of Screen based Beam Profile Measurement i

\ \U.W T L mOw /] RS ™
Example: GSI LINAC, 4 MeV/u, low current, YAG:Ce screen

m BeamView - HITRAP TRIDF2 .
[ 07.0kt08 17:29:37 |
nble biving (2008~ HOT. projection W eaebinng BB Ver. projection

Advantage of screens:
»Direct 2-dim measurement
»High spatial resolution

» Cheap realization

o]

average pixel value
= K
o = ] :

o N & o @ 5 N

-40 -20 0 20
left position [mm]

b/w CCD:

. — artificial
with digital output — false-color

Observation with a CCD camera

or video & frame grabber.
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Light output from various Scintillating Screens i
AN . N g s BN » WSS ./ ST ™
Example: Color CCD camera: Images at different particle intensities determined for U at 300 MeV/u

P43

YAG:Ce Herasil Quartz:Ce ZrO,:Mg

» Very different light yield i.e. photons per ion‘s energy loss
> Different wavelength of emitted light

SN
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Physics of Scintillating Mechanism | %
BN | e .

Interaction steps within the scintillation process

» beam interaction

— hot electrons + deep holes O o O O
Beam °
» multiplication: —
o— © hy

electron - electron scattering

- © ‘oe\ © ©
> thermalization: @

electron — phonon coupling

hy
» capture at doped atom and/or O O O
electron - hole pair creation

.. Doping atom
» emiIssion of photons

GSN
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Wavelength Spectrum for Scintillation Screens 9

Wavelength spectrum of Al,O5:Cr (Chromox)

— Emission is dominated by Chromium dopant

PR [ T NN (N T T W W W T |

AIEOSCT
11— 1" pulse
71— 50" pulse
' 100" pulse Other materials have different spectra
= — Optimization to sensitivity of detector
o - .
.E - h — but others material properties
£ | have to obeyed and weighted
300 400 500 600 700 800
wavelenght (nm)
Beam parameters: 238U28+, 4.8 MeV/u, 5 - 10° ppp in 500 ps, ~450 pA [E. Gutlich (GSh) et al., BIW 2010]
-IEEESN
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Material Properties for Scintillating Screens i
BN\ "W T oW S
Some materials and their basic properties:
Abbreviation Material ~ Activator max. emission decay time
Quartz 5104 none optical < 10 ns
Csl Tl 550 nm L ps
Chromolux Al,O3 Cr 700 nm 100 ms
YAG Y3Al50q9 Ce 550 nm 0.2 ps
Li glass Ce 400 nm 0.1 ps
P11 ZnS Ag 450 nm 3 ms
P43 Gdy04S Th 545 nm 1 ms
P46 Y3Al50q9 Ce 530 nm 0.3 ps
P47 Y5Si505 Ce, Th 400 nm 100 ns

Properties of a good scintillator:

» Large light output at optical wavelength — standard CCD camera can be used
» Large dynamic range — no deformation due to saturation or self-absorption

» Short decay time — observation of time variations

» Radiation hardness — long lifetime

» Good mechanical properties — typical size up to @ 10 cm

(Phosphor Pxx grains of @ ~ 10 um on glass or metal).

GSN
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Scintillation Degeneration due to Material Modification

5

[arb.u.]

£

[ o' BN
m @

N
o

Width ¢ [mm] Light Yield
N
N

10° ——

LINAC typical parameters:

energy loss per argon ion in 90 um sample: 456 MeV
— particles are completely stopped in the screen material.

T T T T T T T T T T T T

Quartz:Ce

N

158

05 1.0
rated Particles x 10

Position [mm]

Peter Forck, JUAS Archamps

Investigation for medium currents

»  light yield decreases during irradiation
» change in beam width

» change in beam shape

This dedicated material is
not suitable for higher currents

Beam parameters: 4°Ari%* 11.4 MeV/u,
2 - 10° ppp in 100 ps, ~30 pA,
1000 beam pulses

[E. Gutlich (GSI) et al., SCINT 2009]

10 Beam Profile Measurement



B

Outline:
» Scintillation screens:
emission of light, universal usage, limited dynamic range
» SEM-Grid: emission of electrons, workhorse, limited resolution
» Wire scanner
» lonization Profile Monitor and Beam Induced Fluorescence Monitor
» Optical Transition Radiation
» Synchrotron Light Monitors
» Summary
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Secondary Electron Emission by Ion Impact i
BN o LA TN L N [ RSl T

Energy loss of ions in metals close to a surface:
Distant collisions — slow e~ with E,;, < 10 eV
— ‘diffusion’ & scattering wit other e: scattering length L, ~1 - 10 nm

— at surface ~ 90 % probability for escape
Closed collision: — fast e” with E,;,>> 100 eV inelastic collision and ‘thermalization’

Secondary electron yield and energy distribution comparable for all metals!

_ *
= Y =const. * dE/dX  (Sternglass formula) Different targets:

S5—
x Mg 12 Aorset
4? ® Al I3 Aorset
sA1 13 Hil
= Curve | 0Fe 26 Aarset
e \ c 3 sNi 28 Aorset
— $-ra = oCu 29 Hill
beam y — oMo 42 Hil
) (<) - a Ay 79 Aarset
o —— vPb 82 Aarset
n ¢Pb 82 Hill
- c
e S
]
8]
DL Lo
L ot
~ B}
L.~ 10 nm °r
6
5 1 I T T N W I 1 |
4 2 3 4 5 678910 20 30
From E.J. Sternglass, Phys. Rev. 108, 1 (1957) E-Proton Energy in Mev

(1)
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Secondary Electron Emission Grids = SEM-6rid - ".

Beam surface interaction: e~ emission — measurement of current.

Example: 15 wire spaced by 1.5 mm:

SEM-Grid feed-through on CF200:

GSN
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Secondary Electron Emission Grids = SEM-6rid - ".

Beam surface interaction: e~ emission — measurement of current.

Example: 15 wire spaced by 1.5 mm:

SEM—grid  eam \l/ range select
[ /U converter
i : R,
* R integrator
_\:'L I_ one per wire
’_ly [\ Y
o — — 3 range
5
- =
LR, E ADC
I/U converter| . integrator 2
one per wire _I\_|:I’{L If g address
Each wire is equipped with one 1/U converter ’—1 dllglral _
—  electronics

different ranges settings by R;
— very large dynamic range up to 106.

GSN
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The Artist view of a SEM-6rid = Harp

The Faraday Cup is an award granded every second year for beam diagnostics inventions .

GSN
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Properties of a SEM-6rid

Secondary e- emission from wire or ribbons, 10 to 100 per plane.

Typical specifications for a SEM-Grid used at the GSI-LINAC:

Diameter of the wires 0.05 to 0.5 mm
Spacing 0.5 to 2 mm
Length 50 to 100 mm
Material W or W-Re alloy
Insulation of the frame glass or Al;O4
number of wires 10 to 100

Max. power rating in vacuum 1 W/mm
Min. sensitivity of I/U-conv. 1 nA/V

Dynamic range 1:10°
Number of ranges 10 typ.
Integration time 1l pustols

Care has to be taken to prevent over-heating by the energy loss!
Low energy beam: Ratio of spacing/width: =~ 1mm/0.1mm = 10 — only 10 % loss.
High energy E,;, > 1 GeV/u: thin ribbons of larger width are used

due to negligible energy loss.

GSN
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Example of Profile Mesurement with SEM-Grids
WL T L I RS T

B\

O
e

Even for low energies, several SEM-Grid can be used due to the ~80 % transmission
= frequently used instrument beam optimization: setting of quadrupoles, energy....

Example: C®* beam of 11.4 MeV/u at different location at GSI-LINAC
. eeesewwiees |

Profilgitter L
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Outline:
» Scintillation screens:
emission of light, universal usage, limited dynamic range
» SEM-Grid: emission of electrons, workhorse, limited resolution
» Wire scanner: emission of electrons, workhorse, scanning method
» lonization Profile Monitor and Beam Induced Fluorescence Monitor
» Optical Transition Radiation
» Synchrotron Light Monitors
» Summary
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Wire Scanner - ‘p.

Instead of several wires, one wire is scanned though the beam.

Fast pendulum scanner for synchrotrons; sometimes it is called ’flying wire’:

GSN
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Usage of Wire Scanners T
BN\ S T W /O TREESE T
Material: carbon or SiC — low Z-material for low energy loss and high temperature.

Thickness: down to 10 um — high resolution.

Detection: Either the secondary current (like SEM-grid) or
high energy secondary particles (like beam loss monitor)
flying wire: only sec. particle detection due to induced current by movement.

Secondary particles: Proton impact on

Proton beam — hadrons shower (=, n, p...) 7%00Socimner at CERN-PS Booster:

Electron beam — Bremsstrahlung photons.
Pion threshold
beam 20000 o . W
computer ; -
secondary o P g .
particles scintillator ) 5000 = "
— counter £ 5_-
:;:;:-____;:;:-‘:___:::::::::fl:l o = 10000 + .
______ _ =D DT ;} ,.._3,
wire PM .
5000 -
position reading o
. ]
rotation 0+—= = = : :
0 200 400 600 800
Kinetic energy (MeV)

Kinematics of flying wire:
\elocity during passage typically 10 m/s = 36 km/h and typical beam size & 10 mm

= time for traversing the beam t #1 ms
SN
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The Artist View of a Wire Scanner —

at

T flw_' h Mi*ﬂlkﬂddﬁm‘m
10 travel allowanes. The solection of recipionts is tho

imnoy ative beam diagaostics instrumen)
ud.'fi'.ﬁmm article, afodic of simple
s produced i oo

I

¥
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Slow, linear Wire Scanner i

Slow, linear scanner are used for:
> low energy protons due to lack of sec. particles A
S

> high resolution measurements e.g. at e"-e~ colliders
by de-convolution 62,.=0%meas—wire
= resolution down to um can be reached

» detection of beam halo.

movement

bellow

wire for horizontal profile
wire for vertical profile
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Slow, linear Wire Scanner
BN . W
Slow, linear scanner are used for:
» low energy protons due to lack of sec. particles
> high resolution measurements e.g. at e"-e~ colliders
ion 2 — _ 2
by de-convolution 62,q.m=0%meas—wire
= resolution down to um can be reached

> detection of beam halo.

movement

£

wire for horizontal profile

beam pipe

wire for vertical profile

_ SN
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Comparison between SEM-6rid and Wire Scanners i
BN\ LW T . W /RIS T
Grid: Measurement at a single moment in time

Scanner: Fast variations can not be monitored
— for pulsed LINAC:s precise synchronization is needed

Grid:  Not adequate at synchrotrons for stored beam parameters
Scanner: At high energy synchrotrons flying wire scanners are nearly non-destructive

Grid:  Resolution of a grid is fixed by the wire distance (typically 1 mm)
Scanner: For slow scanners the resolution is about the wire thickness (down to 10 um)

— used for e—-beams having small sizes (down to 10 um)

Grid: Needs one electronics channel per wire
— expensive electronics and data acquisition

Scanner: Needs a precise movable feed-through — expensive mechanics.

GSN
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Outline:

» Scintillation screens:
emission of light, universal usage, limited dynamic range

» SEM-Grid: emission of electrons, workhorse, limited resolution

» Wire scanner: emission of electrons, workhorse, scanning method

» lonization Profile Monitor and Beam Induced Fluorescence Monitor:
secondary particle detection from interaction beam-residual gas

» Optical Transition Radiation

» Synchrotron Light Monitors

» Summary
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Ionization Profile Monitor T

Non-destructive device for proton synchrotron:

» beam ionizes the residual gas by electronic stopping
» gas ions or e” accelerated by E -field ~1 kV/cm

» spatial resolved single particle detection

HYV electrode Voltage divider
+6 kV
R
—] +5 kV
beam
T |E +4 KV
+

—] H, +2 kV

I Z 1 } m +1 kV
MCP Anode:  One device per plane.

Position readout

Typical vacuum pressure:
Transfer line: N, 107%...107% mbar = 3-108...3.101%m"3

Synchrotron: H, 10711...10™ mbar = 3-10°...3-10"cm3

beam et g

Realization at GSI synchrotron:

(IPM with 175 x 175 mm clearance)

T Tty —— S B -
e

=

—— g .l>f<~

[HV—clectrode)8

-

= ; ., = ,é '-‘ "
MCP: 100 x 30 mm? | EEREE o

*v—! e
> ~a

63 wires, 2 mm spacing
I B

e

300 mm flange
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Realization of Ionization Profile Monitor at a LINAC - ’.

— ;L /

The realization of an IPM for the use at the GSI LINAC:

Vacuum pressure p = 10~/ mbar and high current of | = 1 mA — no MCP required.
Readout by strips fed to an I/U converter.

HV electrode Voltage divider
+6 kV
R
— +5kV
beam

—] E +4 kV

— +3kV
+

1 H, +2kV

| Z 1 } m +1 kV
MCP Anode:

Position readout
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Ionization Profile Monitor Realization 9;
BN LW TEEE . mew -
The realization for the heavy ion storage ring ESR at GSI:  Realization at GSI synchrotron:

(IPM with 175 x 175 mm clearance)

o ,t‘ - :-;.%:‘~ S

— _a s 3

== S ‘."*.:s“‘v" 33 —

HV—clectrode g

beam ESSes
\ Vertical IPM =
MCP: 100 x 30 mm2

IPM support
& UV lamp

E-field separation disks
View port @150 mm

Jb 63 eres 2 mm spacing

300 mm ﬂange

GSN
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Tonization Profile Monitor Realization » %
nA 7 aA "TEEEEEERENY  UE RS W
The realization for the heavy ion storage ring ESR at GSI:  Realization at GSI synchrotron:

IPM support
& UV lamp

Horizontal IPM: _

E-field box

Electrodes

E-field sep

Peter Forck, JUAS Archamps



Multi Channel Plate MCP O

A\ ‘ WL T . WO/ CEEETSE ™
MCP are used as particle detectors with secondary electron amplification.
AMCP is: L CHANNEL

{12 um)

» 1 mm glass plate with 10 um holes
» thin Cr-Ni layer on surface

| P
G G
L Lo
L s
b
R
S
"l

> voltage ~1 kV/plate across
— e~ amplification of ~ 102 per plate.
— resolution = 0.1 mm (2 MCPs)

3 Ty

0.48mm ) -
‘ Electron microscope image:

e

""{'-‘.‘L?'—.-?[

X

Y
s
e
8
X
L

=

X

] ] |
s

e

Ax

-

g
x
s

e
[rey!

ey

1

g
=K

Y

"",_'.I_A

Anode technologies:
» SEM-grid, ~ 0.5 mm spacing
— fast electronics readout

™ oI
» phosphor screen + CCD

CHANN{_.EL WALL _ouTpuT
— high resolution, but slow timing :ENLZL(I'.ITI'F{ON-n = /;‘;ﬁ\\ \%;ZLUE:;URTODE
— fast readout by photo-multiplier PGS ELECTRONS
> single particle detection iyttt U (about 1 kV)
— for low beam current. ' — } -
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Application: ‘Adiabatic’ Damping during Acceleration 9;

BN o LM TR . W -
The beam emittance ¢ = jdxdx' is defined in the laboratory frame.
. . 10 ————7——— 71— 7 7 T 7T
During acceleration: — before acc.
——t=02 s
for increasing v and constant v, : 08 [F---t=04 s s
= x' shrinks g o L end ace. |
— emittance & shrinks E '
— width x = Ve shrinks. = o
Lz
A 0.2
\Y
J_ ]
X\ - 0.0 P N L O N O O S I O I o -
V -30 -20 -10 0O 10 20 30

I coordinate [mm/]

Non-intercepting ionization profile monitor is well suited for long time observations
without beam disturbance — mainly used at proton synchrotrons.

GSN
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Broadening due to the Beam's Space Charge: Ion Detection

BN\

The electrical field of the beam acc r-lf*m‘rm the residual gas 1ons
— broadening of the measured profile o

Space charge field of round beam: Egyq0e(7)

Apprc

600 [

1]
)
o
o

+ 2
X. correction: 0

corr

E ion charge q=73
Ions per bunch N=10°
bunch length 1=3 m
beam width =1 mm

0 5 10 15 20 25 30
radius [mm |

e21n?2

o degr/ m-ch

measured/true width

.—-

'.IE"LIFH

4.0

35 -

i)

— a

2

2
meas — O

corr:

Efi:xe_r :

O
4y

AT [ a2
1 . qf}h . l (1 . (:_-tr |,-"rli:r ) )
ZTE T

< dyap - N - 1

3.0 |

2.0 |

1.5

1.0

ion charge q=73

ions per bunch N=10°

S W S S |

5 10 15
true beam width (FWHM) [mm]|

20

Parameter: U”3*, 102 particles per 3 m bunch length, cooled beam with 2.5 mm FWHM.
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Electron Detection and Guidance by Magnetic Field

B\

Alternative: e~ detection in an external magnetic field

— cyclotron radius T, =,/2M,E,, /eB = 1, <0.1mmforB=0.1T

Eyin, given by atomic physics, 0.1 mm is internal resolution of MCP.

HV electrode

Voltage divider

+6 kV

4 E B +5kV

O beam v

4 +3 kV

—] +2 kV

— \ [P LV

- —— 0 kV
MCP Anode:

Position readout

Time-of-flight: =1 ns — 2 or 3 cycles.

10

—10

o0
o

vertichkl

vertical (acc.) axis [mm]

30

axis [mm]

—_
(o]

4V —_
] o
T T

I
w
o

I T

beam (radius r==2.5 mm)

S

e~ B=0.1 T

(o]

0.95 1.00 1.05
horizontal axis [mm]

I
I

-B=o’ ‘\H’“
r

*e,B 0.1T

| /
f 1

| '.
\ | '

D :

-3

—2 —1

0] 1 2 3
horizontal (detection) axis [mm]|

B-field: By dipole magnets with large aperture — IPM is expensive device.
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IPM: Magnet Design g
B\ N :
Magnetic field for electron guidance: Corrector
Maximum image distortion: Vertical IPM
5% of beam width = 4AB/B< 1%
Challenges: Horizontal IPM
» High B-field homogeneity of 1% Corrector
» Clearance up to 500 mm
» Correctors required 480mm
to compensate beam steering

> Insertion length 2.5 m incl. correctors

300mm

For MCP wire-array readout
lower clearance required
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Beam Induced Fluorescence for intense Profiles . g

BN .
Large beam power — Non-intercepting method: ‘
— Beam Induced Fluorescence BIF . r—
N, + lon — (N,")*+ lon — N,* +y + lon SnZanis

camera Il
image intensifier ”’! _

With single photon detection scheme
390 nm< A< 470 nm
= non-destructive, compact installation.

blackened chamber wal] ,/‘1,’!

vacuum gauge < N2 atmosphere

9 beam

image intensifier & CCD

GSN
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Beam Induced Fluorescence Monitor BIF: Image Intensifier i
BN\ A _~ (T N T

beam N

residual gas (+N, ) phOtOH
window ‘ \
lens system
Image
Intensifier

CCD camera

Scheme of Image intensifier:

Photocathode % single y

Image intensifier: A BIF monitor consists of only:

» Photo cathode — creation of photo-e- > optics outside beam pipe

» Accelerated toward MCP for amplification » Image intensifier + camera

» Detection of ampl. e” by phosphor screen » gas-inlet for pressure increase

» Image recorded by CCD = nearly no installation inside vacuum.

— Low light amplification only LEDs for calibration
(commercially used for night vision devices) = cheaper than IPM, but lower signal.

GSN
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Beam Induced Fluorescence Monitor BIF: Image Intensifier

O
i
AN & Y v g /N «~ HRSSW ./ ST ™

‘Single photon counting’:
S beam N
viewport size : :
E ] residual gas (+ N, ) phOtOﬂ
\ § 3R window
_ b1 H ‘ \
i o O — . 1°% lens system
: b
k I Image
: 2% Intensificr
i1
13 : CCD camera
19
> ol

15
ot
5
0

aver. pixel int.

A BIF monitor consists of only:

Example at GSI-LINAC: > optics outside beam pipe

4.7 MeV/u Ar 1%* beam > image intensifier + camera

1=2.5 mA equals to 10! particle > gas-inlet for pressure increase

One single macro pulse of 200 ps = nearly no installation inside vacuum.
Vacuum pressure: p:jI_O'5 mbar (NZ) only LEDs for calibration

= cheaper than IPM, but lower signal.

SN
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Comparison between IPM and BIF O.

BN\ WS T . maw /RS ™
Non-destructive methods preferred:

Beam is not influenced and diagnostics device is not destroyed!
IPM: Beam ionizes the residual gas

— measurement of all ionization products, 2 = 4z-geometry due to E-field
BIF: Beam ionizes and excites the residual gas

— measurement of photons emitted toward camera, solid angle 2 ~10-3

IPM: Higher efficiency than BIF
BIF:  Low detection efficiency, only ~ 10" of IPM
= longer observation time or higher pressure required

IPM: Complex installation inside vacuum
BIF: Nearly no installation inside vacuum

IPM: More expensive, for some beam parameters even guiding magnetic field required
BIF: More sensitive to external parameters like radiation stray light

GSN
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Outline:
» Scintillation screens:
emission of light. universal usage, limited dynamic range
» SEM-Grid: emission of electrons, workhorse, limited resolution
» Wire scanner: emission of electrons, workhorse, scanning method
» lonization Profile Monitor and Beam Induced Fluorescence Monitor:
secondary particle detection from interaction beam-residual gas
» Optical Transition Radiation:
crossing material boundary, for relativistic beams only
» Synchrotron Light Monitors
» Summary
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Optical Transition Radiation OTR

BN\ A - [T TSN T
Optical transition radiation is emitted by
charged particle passage through a material boundary.
Electrodynamics field configuration
changes during the passage: mirror
— Polarization of the medium /
— emission of energy wind /\ﬁ / lens + filter sensitive
Description by i CCD camera
classical electrodynamics & relativity:
2 2 2 beam pipe
d“w _ HoCe 4 radiation
3 cone
dQde 4z (y—z N 92)2 7~
beam
W: energy emitted in solid angle 2 OTR screen
¢ angle of emission
v, Lorentz factor > Insertion of thin Al-foil under 45°
o: angular frequency intervall E=2zhe » Observation of low light by CCD.
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Optical Transition Radiation: Angular Photon Distribution Q

Y |
BN\ WS T . maw /7 RS ™
. dN, A 2
Photon distribution fl’&"z”“” Nyeanm ‘“I% log ( o (’”’) - )9 —
L . uz(l s—a 14"
within a solid angle dQ and ( e )
I : 14 L R I A R R T
Wavelength interval Ayeqin 10 Agng 5 150 B25 Mev
T {2 L----y=200 E=100 MeV i
_ _ = —— ¥=2000 E=1000 MeV
» Detection: Optical 400 nm <A <800 nm ~ g a1l %100
T ) \| / \
using image intensified CCD 208 - | I _
. L © Sl v x1000
» Larger signal for relativistic beam y>>1 0.6 - SNV | (N .

» Angular focusing for y>>1 0.4 ¢ S\

— well suited for e beams
= p-beam only for E;,>10 GeV (>10)

02 F \

hoton distri
T
\
\
\
\
\
\
\
\
-
o ——
f
~
~
» PR
- /’
/
/
/
!
I
!
[}
]
I
! |

5. 0.0 e
40 =20 0 20 40

radiation angle 6 [mrad]|

— Profile by focusing to screen
— Beam angular distribution by focusing on infinity
due to emission dependence on beam angular distribution.
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OTR-Monitor: Technical Realization and Results i
B\ > . T O /7 TRRESE T
Example of realization at TERATRON:
DS . Results at FNAL-TEVATRON synchrotron
> Insertion of foil _
e.g. 5 um Kapton coated with 0.1um Al with 150 GeV proton
Advantage: thin foil = low heating & straggling Using fast camera: Turn-by-turn measurement
2-dim image visible 6 4 2 0 2 4
3 rad-hard g 500 o =1.03 mm
camera = o
Lens é TR nensty (/;\)rb Unit(s») R

Filter c=066mm | -3

wheel

i« Window

Beam
pipe

X {mm)
V.E. Scarpine (FNAL) et al., BIW’06

GSN
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OTR:

Scint.

@,

Comparison between Scintillation Screens and OTR i
: S T . W /O PREESSE ™
electrodynamic process — beam intensity linear to # photons

Screen: complex atomic process — saturation possible

OTR:

Scint.

thin foil Al or Al on Mylar, down to 0.25 um thickness

— minimization of beam scattering (Al is low Z-material)

Screen: thickness ~ 1 mm inorganic, fragile material, not radiation hard

OTR:

Scint.

low number of photons — expensive image intensified CCD

Screen: large number of photons — simple CCD sufficient

OTR:

Scint.

complex angular photon distribution — resolution limited

Screen: isotropic photon distribution — simple interpretation

OTR:

Scint.

beam angular distribution measurable— beam emittance

Screen: no information concerning the beam angular distribution

OTR:

Scint.

large y needed — e -beam with E,;, > 100 MeV, proton-beam with E;, > 100 GeV

Screen: for all beams
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Outline:
» Scintillation screens:
emission of light, universal usage, limited dynamic range
» SEM-Grid: emission of electrons, workhorse, limited resolution
» Wire scanner: emission of electrons, workhorse, scanning method
» lonization Profile Monitor and Beam Induced Fluorescence Monitor:
secondary particle detection from interaction beam-residual gas
» Optical Transition Radiation:
crossing optical boundary, for relativistic beams only
» Synchrotron Light Monitors
photon detection of emitted synchrotron light in optical and x-ray range
» Summary

GSN
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Synchrotron Light Monitor i
BN\ N T . W RS ™
An electron bent (i.e. accelerated) by a dipole magnet emit synchrotron light.
) ) . . center of mass system laboratory system
Thls Ilght 1S emlttEd bending radius . bending radius

Into a cone of |
opening 2/y in lab-frame.
—Well suited for rel. e
For protons:

Only for energies E>100 GeV

o
o '
o 7
gt Z
- Z7
~

4 y"
Power : P oc ~—
. . orbit of electrons ’ ,O
The light is focused to a diation field radiation field
intensified CCD. cone of synch. radiation angle oA
Advantage: c—beam
Signal anyhow available!
U intensified
dipole magnet lens filter CCD camera
beding radius p
GSR
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Realization of a Synchrotron Light Monitor ~ %

N . @@
Extracting out of the beam’s plane by a (cooled) mirror

— Focus to a slit + wavelength filter for optical wavelength
— Image intensified CCD camera

Example: CERN LEP-monitor with bending radius 3.1 km (blue or near UV)

Focusing spherical mirror (motorized)
Motorized mirrors
\f\\\
. W Light origin selecting slit
Navelength filter
Density filter

Detector : pulsed intensifier
and CCD chip

Be extraction mirror

e -beam

GSN
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Result from a Synchrotron Light Monitor i
‘ AN & g s I ~ JHRSSW ./ ST ™
Example Synchrotron radiation facility APS accumulator ring and blue wavelength:

0 500 1000 1500 2000

....................

G‘=().165 mim

Y (mm)

AAAAAAAAAAAAAAAAAAAAAAAA

COUNTS (ARB. UNITS)
~ 800 -

O .= 0.797 mm

600 -

400

200 A

COUNTS (ARB. UNITS

0*'

X (mm)

Advantage: Direct measurement of 2-dim distribution, only mirror installed in the vacuum pipe

Realization: Optics outside of vacuum pipe

Disadvantage: Resolution limited by the diffraction due to finite apertures in the optics.
SN
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Diffraction Limit for a Synchrotron Light Monitor

Use of optical wavelength and CCD: A above critical A (Spectrum fall-off).
Example 1:1 image: Cone of emission for horizontally polarized light: a = 0.41 (/I/p)1/3

General Fraunhofer diffraction limit (given by emission cone): ¢ = ——

2D/L
Opening angle of optics: D = 2a - L P
~ 2 \
Diffraction pattern with = 0 = 0.6 (/1 / P)l ' lens diffraction pattern
: width 2*c
angleo. ----+ I~
electron  emiftted photon | l
trajectory \ | D P(x)
bending radius p -7\  T—\ e T(
i V x
distance L i distance L
- —— .

A good resolution for:
» large dipole bending radius p, but fixed by the accelerator
» short wavelength, but good optics only for 4 > 300 nm

GSN
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Synchrotron Light Monitor overcoming Diffraction Limit

B\ S T . W /S TREESE ™
: e /3
The diffraction limitis = o =0.6- (/12 /,o)1
Possible improvements:
» Shorter wavelength: Using x-rays and an aperture of @ 1mm
— ‘x-ray pin hole camera’.
» Interference technique: At optical wavelength using a double slit
— interference fringes with resolution down to um range. Photo-detector
Double slit
Interference
fringe
Synchrotron
radiation
focus iense
polarizer
band-pass fileter
Electron bunch
SN
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x-ray Pin-Hole Camera: Installation | %
/8] R

BN - @@

The diffraction limitis = oc=0.6- (/12 | p] = shorter wavelength by x-rays.
‘ e - xample: PETRA 111

hsorber#l — X—tay optics quads3 monochromator
AUSUIECISTL - \

e
an}e. a quadﬂ

—

8

————

e~

Monochromator #g

Si(311)

\ |

P

\e

2 OF /
Peter Forck, JUAS Archamps
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x-ray Pin-Hole Camera: Installation Q
BN WM T . W -

: T /3
The diffraction limitis = oc=0.6- (/12 | p] = shorter wavelength by x-rays.
xample: PETRA 111

quad=3

R 0T A A - 2
| X—1ay optics

bsorber#l D— monochromator
WSOTCe1=. \

Cﬁll}t‘f.\ quad#4

From K. WittenbLélrg, DESY
—

ca. 15>m

/ Twa interc rahle
wnipUEhenoeable Compound reflective lens (RWTH Aachen)

Pinhole
0.5 mm thick tungsten blade with a circular hole

of 20 um. (20 um resolution)

“

N=31,= 2 umres. < 1 um aligned

= |
‘ement



x-ray pin-hole Camera: x-ray Detector

BN A~ Ul

X-ray optics — scintillator detector (shifting x-ray to optical light) - CCD

— TT—

/ t-:ompound refractive lens ICRL\

7

S OO0
“
~

LY

ho =21keV

. bending 11'1.:1 gnet 7=

- N pinl

Example: PETRA III

» Pinhole with & 20 pum
or novel focusing devict

» monochromator (silicon

» scintillator to convert
X-ray to optical photons|...-

» CCD sensor
From K. Wittenburg, DESY

“h
W TFEEREEESE W%

fluorescent

screen \
|'J :

~commercial x-ray camera
" AA50 beam monitor Hamamats

|

)
FH
]

.-ﬂ"‘u.._ﬂ

lens

CCD camera

Ampitude 247"

mm

Envttamce 117 o rad

Bk Xphe

Conds D204

10 020540

mm

Sigma

Operations Mode [Betried] Serves anwahl [Detaun

J"\
[ 6=47 um
i R — L4 e e
S Amrpitide 225
smion 080
"

185

Hew

velniDat ol

X-ray camera

. Visible light
(Hamamatsu): 9
I
. ¥
Be .WIHdC\\' Microscope I{, \
B objective 5
\\\ i = ~ | " }r>
* I I'lr"\l i | k"-\.‘_ - -j—' 7
. - - o \J‘_,' 7
x-ravs/ v <V mirror
"/’
Amorphous
carbon plate

Sing}le crystal scintillator '
(Lu2SiOs:Ce, thickness < 10 um)
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Summary for Beam Profile C?

B\ L T . W /7 TRESSE T
Different techniques are suited for different beam parameters:
e -beam: typically @ 0.3 to 3 mm, protons: typically @ 3 to 30 mm

Intercepting <> non-intercepting methods

Direct observation of electrodynamics processes:
» Optical synchrotron radiation monitor: non-destructive, for e -beams, complex, limited res.

» X-ray synchrotron radiation monitor: non-destructive, for e -beams, very complex

» OTR screen: nearly non-destructive, large relativistic y needed, ¢ -beams mainly
Detection of secondary photons, electrons or ions:

» Scintillation screen: destructive, large signal, simple, all beams

» lonization profile monitor: non-destructive, expensive, limited resolution, for protons
» Residual fluorescence monitor: non-destructive, limited signal strength, for protons
Wire based electronic methods:

» SEM-grid: partly destructive, large signal and dynamic range, limited resolution

» Wire scanner: partly destructive, large signal and dynamics, high resolution, slow scan.
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