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Measurement of Beam Profile 

 

 

 

 

 

The beam width can be changed by focusing via quadruples. 

Transverse matching between ascending accelerators is done by focusing. 

→ Profiles have to be controlled at many locations. 

Synchrotrons: Lattice functions (s) and D(s) are fixed  width  and emittance  are:  

 

 

 

LINACs: Lattice functions are ‘smoothly’ defined  due to variable input emittance. 

)()(   and  )()()( 2
2

2 ss
p

p
sDss yyyxxx  







 


A great variety of devices are used: 

 Optical techniques: Scintillating screens (all beams), 

               synchrotron light monitors (e−), optical transition radiation (e−),  

 residual gas fluorescence monitors (protons), residual gas monitors (protons). 

 Electronics techniques: Secondary electron emission (SEM) grids, wire scanners (all) 

 grids with gas amplification MWPC (protons)  
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Outline:      

 Scintillation screens:  

    emission of light, universal  usage, limited dynamic range  

 SEM-Grid 

 Wire scanner 

 Ionization Profile Monitor and Beam Induced Fluorescence Monitor   

 Optical Transition Radiation   

 Synchrotron Light Monitors 

 Summary 
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Scintillation screens are used from the ‘early days’ on e.g.  by Ernest Rutherford in 1911: 

Early Usage of Scintillation Screen by E. Rutherford 

Plum pudding model: 

Rutherford model: 

ZnS:Ag 

222Rn decay 

‘beam’ of α 
with 5.5 MeV 

Rutherford or ‘Geiger-Marsden Experiment’: 

Nuclei are made of point-like charges 

ZnS:Ag  

 light emitter excited by the energy release by charged particle  sintillation   

 today known as Phosphor P11 and is used in TV tubes etc.   
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Scintillation Screen 

 

 

 

 

 

Particle’s energy loss in matter produces light  

 the most direct way of profile observation  as used from the early days on! 

Pneumatic feed-through  
with Ø70 mm screen : 

Flange & 
window 

Screen 

70 mm 

beam 

Pneumatic 
drive 

CCD 
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Example of Screen based Beam Profile Measurement 

 

 

 

 

 

Observation with a CCD camera 

 with digital output  

or video & frame grabber. 

Advantage of screens:  

Direct 2-dim measurement 

High spatial resolution 

Cheap realization 

 

 
b/w CCD: 

artificial 
false-color 

Example: GSI LINAC, 4 MeV/u, low current, YAG:Ce screen 
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Al2O3 
CsI:Tl Al2O3:Cr P43 

YAG:Ce     Herasil   Quartz:Ce          ZrO2:Mg 

 Very different light yield i.e. photons per ion‘s energy loss 

 Different wavelength of emitted light   

Light output from various Scintillating Screens 

Example: Color CCD camera: Images at different particle intensities determined for U at 300 MeV/u 
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Interaction steps within the scintillation process 

 beam interaction 

 hot electrons + deep holes 

 multiplication:  

electron – electron scattering  

 thermalization:  

electron – phonon coupling 

 capture at doped atom and/or 

electron - hole pair creation 

 emission of photons 

 

Physics of Scintillating Mechanism 

Beam 

hν 

Doping atom 

hν 
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[E. Gütlich (GSI) et al., BIW 2010] Beam parameters: 238U28+, 4.8 MeV/u, 5 · 1010 ppp in 500 µs, ~450 µA 

Wavelength Spectrum for Scintillation Screens  

Wavelength spectrum of Al2O3:Cr (Chromox) 

 Emission is dominated by Chromium dopant 

Other materials have different spectra  

 Optimization to sensitivity of detector 

 but others material properties  

      have to obeyed and weighted  
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Material Properties for Scintillating Screens 

 

 

 

 

 

Some materials and their basic properties: 

 Properties of a good scintillator: 

 Large light output at optical wavelength → standard CCD camera can be used 

 Large dynamic range → no deformation due to saturation or self-absorption 

 Short decay time → observation of time variations 

 Radiation hardness → long lifetime 

 Good mechanical properties → typical size up to Ø 10 cm 

(Phosphor Pxx grains of Ø  10 μm on glass or metal). 
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 light yield decreases during irradiation 

 change in beam width 

 change in beam shape 

[E. Gütlich (GSI) et al., SCINT 2009] 

Beam parameters: 40Ar10+, 11.4 MeV/u,  

                                 2 · 109 ppp in 100 µs, ~30 µA,  

                                 1000 beam pulses 

Investigation for medium currents 

This dedicated material is  

not suitable for higher currents 

LINAC typical parameters:  

energy loss per argon ion in 90 µm sample: 456 MeV 

→ particles are completely stopped in the screen material.  

Scintillation Degeneration  due to Material Modification  
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Outline:      

 Scintillation screens:  

   emission of light, universal  usage, limited dynamic range  

 SEM-Grid: emission of electrons, workhorse, limited resolution      

 Wire scanner 

 Ionization Profile Monitor and Beam Induced Fluorescence Monitor 

 Optical Transition Radiation   

 Synchrotron Light Monitors     

 Summary 
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Secondary Electron Emission by Ion Impact  

Energy loss of ions in metals close to a surface: 

Distant collisions  slow e- with Ekin   10 eV  

 ‘diffusion’ & scattering wit other e-: scattering length Ls  1 - 10 nm 

 at surface  90 % probability for escape 

Closed collision:  fast e- with Ekin>> 100 eV inelastic collision and ‘thermalization’ 

Secondary electron yield and  energy distribution comparable for all metals!  

       Y = const. * dE/dx    (Sternglass formula) 

beam 

Ls  10 nm 
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Different targets: 

From E.J. Sternglass, Phys. Rev. 108, 1 (1957) 
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Secondary Electron Emission Grids = SEM-Grid 

 

 

 

 

 

Beam surface interaction: e− emission → measurement of current. 

Example: 15 wire spaced by 1.5 mm: 

SEM-Grid feed-through on CF200: 
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Secondary Electron Emission Grids = SEM-Grid 

 

 

 

 

 

Beam surface interaction: e− emission → measurement of current. 

Example: 15 wire spaced by 1.5 mm: 

Each wire is equipped with one I/U converter  

 different ranges settings by Ri 

   very large dynamic range up to 106. 
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The Artist view of a SEM-Grid = Harp 

 

 

 

 

 

The Faraday Cup is an award granded every second year for beam diagnostics inventions . 
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Properties of a SEM-Grid 

 

 

 

 

 

Secondary e- emission from wire or ribbons, 10 to 100 per plane. 

 Typical specifications for a SEM-Grid used at the GSI-LINAC: 

Care has to be taken to prevent over-heating by the energy loss! 

Low energy beam: Ratio of spacing/width: ≃ 1mm/0.1mm = 10  only 10 % loss. 

High energy Ekin > 1 GeV/u: thin ribbons of larger width are used  

  due to negligible energy loss. 
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Example of Profile Mesurement with SEM-Grids 

 

 

 

 

 

Even for low energies, several SEM-Grid can be used due to the 80 % transmission 

 frequently used instrument beam optimization: setting of quadrupoles, energy…. 

Example: C6+ beam of 11.4 MeV/u at different location at GSI-LINAC 

horizontal vertical 
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Outline:      

 Scintillation screens:  

   emission of light, universal  usage, limited dynamic range  

 SEM-Grid: emission of electrons, workhorse, limited resolution   

 Wire scanner: emission of electrons, workhorse, scanning method   

 Ionization Profile Monitor and Beam Induced Fluorescence Monitor   

 Optical Transition Radiation   

 Synchrotron Light Monitors  

 Summary 
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Wire Scanner 

 

 

 

 

 

Instead of several wires, one wire is scanned though the beam. 

Fast pendulum scanner for synchrotrons; sometimes it is called ’flying wire’: 
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Usage of Wire Scanners 

 

 

 

 

 

Material:   carbon or SiC → low Z-material for low energy loss and high temperature. 

Thickness: down to 10 μm → high resolution. 

Detection:  Either the secondary current (like SEM-grid) or 
                   high energy secondary particles (like beam loss monitor) 
                   flying wire: only sec. particle detection due to induced current by movement. 

Proton impact on 
scanner at CERN-PS Booster: 

Secondary particles:  

Proton beam → hadrons shower (π, n, p...)  

Electron beam → Bremsstrahlung photons. 

Kinematics of flying wire:  

Velocity during passage typically 10 m/s = 36 km/h and  typical beam size   10 mm 

  time for traversing the beam t  1 ms             
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The Artist View of a Wire Scanner 
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Slow, linear Wire Scanner 

 

 

 

 

 

Slow, linear scanner are used for: 

 low energy protons due to lack of sec. particles 

 high resolution measurements e.g. at e+-e− colliders 

    by de-convolution σ2
beam=σ2

meas−d2
wire 

      resolution down to μm can be reached 

 detection of beam halo. 
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Slow, linear Wire Scanner 

 

 

 

 

 

Slow, linear scanner are used for: 

 low energy protons due to lack of sec. particles 

 high resolution measurements e.g. at e+-e− colliders 

    by de-convolution σ2
beam=σ2

meas−d2
wire 

      resolution down to μm can be reached 

 detection of beam halo. 
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Comparison between SEM-Grid and Wire Scanners 

 

 

 

 

 

Grid:       Measurement at a single moment in time 

Scanner: Fast variations can not be monitored  

    for pulsed LINACs precise synchronization is needed  
__________________________________________________________________________ 

Grid: Not adequate at synchrotrons for stored beam parameters 

Scanner: At high energy synchrotrons flying wire scanners are nearly non-destructive 
__________________________________________________________________________ 

Grid: Resolution of a grid is fixed by the wire distance (typically 1 mm) 

Scanner: For slow scanners the resolution is about the wire thickness (down to 10 μm) 

  used for e−-beams having small sizes (down to 10 μm) 
__________________________________________________________________________ 

Grid:  Needs one electronics channel per wire  

  → expensive electronics and data acquisition 

Scanner:  Needs a precise movable feed-through → expensive mechanics. 
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Outline:      

 Scintillation screens:  

   emission of light, universal  usage, limited dynamic range  

 SEM-Grid: emission of electrons, workhorse, limited resolution   

 Wire scanner: emission of electrons, workhorse, scanning method   

 Ionization Profile Monitor and Beam Induced Fluorescence Monitor:  

    secondary particle detection from interaction beam-residual gas    

 Optical Transition Radiation  

 Synchrotron Light Monitors  

 Summary 
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Ionization Profile Monitor 

 

 

 

 

 

Non-destructive device for proton synchrotron: 

 beam ionizes the residual gas by electronic stopping 

 gas ions or e- accelerated by E -field 1 kV/cm 

 spatial resolved single particle detection 

One device per plane. 

Realization at  GSI synchrotron: 

Typical vacuum pressure: 

Transfer line: N2 10−8...10−6 mbar  3108...31010cm-3  

Synchrotron: H2 10−11...10−9 mbar  3105...3107cm-3  
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Realization of Ionization Profile Monitor at a LINAC 

 

 

 

 

 

The realization of an IPM for the use at the GSI LINAC: 

Vacuum pressure p ≃ 10−7 mbar and high current of I ≃ 1 mA  no MCP required. 

Readout by strips fed to an I/U converter. 

One device per plane. 
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Ionization Profile Monitor Realization 

 

 

 

 

 

The realization for the  heavy ion storage ring ESR at GSI: Realization at  GSI synchrotron: 

Horizontal camera  

Horizontal  IPM:  

E-field box 

MCP 

IPM support  
& UV lamp 

Ø250 mm 

E-field separation disks 

View port Ø150 mm 

Electrodes 
175mm 

Vertical IPM  

Vertical camera 
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Ionization Profile Monitor Realization 

 

 

 

 

 

The realization for the  heavy ion storage ring ESR at GSI: Realization at  GSI synchrotron: 

Vertical camera 

Horizontal camera  

Horizontal  IPM:  

E-field box 

MCP 

IPM support  
& UV lamp 

Ø250 mm 

E-field separation disks 

View port Ø150 mm 

Electrodes 
175mm 

Vertical IPM  
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Multi Channel Plate MCP 

MCP are used as particle detectors with secondary electron amplification. 

A MCP is: 

 1 mm glass plate with 10 μm holes 

 thin Cr-Ni layer on surface 

 voltage 1 kV/plate across 

 e− amplification of  103 per plate. 

 resolution  0.1 mm (2 MCPs) 

Anode technologies: 

 SEM-grid,  0.5 mm spacing 

    fast electronics readout 

 phosphor screen + CCD 

    high resolution, but slow timing 

     fast readout by photo-multipliers 

 single particle detection 

    for low beam current. 

20 m 

Electron microscope image: 
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Application: ‘Adiabatic’ Damping during Acceleration 

 

 

 

 

 

The beam emittance                                  is defined in the laboratory frame.  'dxdx

During acceleration: 

for increasing v|| and constant v⊥: 

 x′ shrinks 

 emittance  shrinks 

 width x = √β shrinks. 

Non-intercepting ionization profile monitor is well suited for long time observations  

without beam disturbance  mainly used at proton synchrotrons. 
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Broadening due to the Beam’s Space Charge: Ion Detection 

Parameter: U73+, 109 particles per 3 m bunch length, cooled beam with 2.5 mm FWHM. 
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Electron Detection and Guidance by Magnetic Field 

 

 

 

 

 

Alternative: e− detection in an external magnetic field 

 cyclotron radius  

Ekin, given by atomic physics, 0.1 mm is internal resolution of MCP. 

Time-of-flight: 1 ns  2 or 3 cycles. 

B-field: By dipole magnets with large aperture  IPM is expensive device. 

T 1.0for  mm 1.0     /2 ,   BreBEmr ckinec
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IPM: Magnet Design 

Maximum image distortion: 

5% of beam width   B/B <  1 % 

Challenges: 

 High B-field homogeneity of  1% 

 Clearance up to 500 mm  

 Correctors required  

    to compensate  beam steering 

 Insertion length 2.5 m incl. correctors 

 

For MCP wire-array readout 

lower clearance required 

Magnetic field for electron guidance: Corrector 

480mm 

Corrector 

Horizontal IPM 

Vertical IPM 

Insertion 

length 

2.5 m 

300mm 
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Beam Induced Fluorescence for intense Profiles   

 

 

 

 

 

Large beam power  Non-intercepting method:   

 Beam Induced Fluorescence BIF 

N2 + Ion  (N2
+)*+ Ion  N2

+ + γ + Ion 

With single photon detection scheme 

390 nm< < 470 nm  

 non-destructive, compact installation. 

Installation of hor&vert. BIF Monitor: 



L. Groening, Sept. 15th, 2003 GSI-Palaver, Dec. 10th, 2003, A dedicated proton accelerator for  p-physics at the future GSI facilities Peter Forck, JUAS Archamps          Beam Profile Measurement  

Photocathode 

Phosphor 

double 
MCP 

single  

many  

e- 

36 

Beam Induced Fluorescence Monitor BIF: Image Intensifier 

 

 

 

 

 

A BIF monitor consists of only: 

 optics outside beam pipe 

 image intensifier + camera 

 gas-inlet for pressure increase 

 nearly no installation inside vacuum. 

        only LEDs for calibration 

 cheaper than IPM, but lower signal. 

Image intensifier: 

 Photo cathode  creation of photo-e- 

 Accelerated toward MCP for amplification 

 Detection of ampl. e- by phosphor screen 

 Image recorded by CCD 

 Low light amplification 

   (commercially used for night vision devices) 

Scheme of Image intensifier: 
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Beam Induced Fluorescence Monitor BIF: Image Intensifier 

 

 

 

 

 

Example at GSI-LINAC: 

4.7 MeV/u Ar 10+ beam  

I=2.5 mA equals to 1011 particle  

One single macro pulse of 200 s  

Vacuum pressure: p=10-5 mbar (N2) 

‘Single photon counting’: 

A BIF monitor consists of only: 

 optics outside beam pipe 

 image intensifier + camera 

 gas-inlet for pressure increase 

 nearly no installation inside vacuum. 

        only LEDs for calibration 

 cheaper than IPM, but lower signal. 
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Comparison between IPM and BIF 

 

 

 

 

 

Non-destructive methods preferred: 

Beam is not influenced and diagnostics device is not destroyed! 

IPM:       Beam ionizes the residual gas  

  measurement of all ionization products, Ω = 4π-geometry due to E-field 

BIF:  Beam ionizes and excites the residual gas   

    measurement of photons emitted toward camera, solid angle  Ω  10-3  

__________________________________________________________________________ 

IPM: Higher efficiency than BIF 

BIF:  Low detection efficiency, only  10-4 of IPM  

  longer observation time or higher pressure required 

__________________________________________________________________________ 

IPM: Complex installation inside vacuum 

BIF:  Nearly no installation inside vacuum 

__________________________________________________________________________ 

IPM: More expensive, for some beam parameters even guiding magnetic field required 

BIF:  More sensitive to external parameters like radiation stray light 
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Outline:      

 Scintillation screens:  

   emission of light. universal  usage, limited dynamic range  

 SEM-Grid: emission of electrons, workhorse, limited resolution   

 Wire scanner: emission of electrons, workhorse, scanning method   

 Ionization Profile Monitor and Beam Induced Fluorescence Monitor:  

    secondary particle detection from interaction beam-residual gas   

 Optical Transition Radiation:  

    crossing material boundary, for relativistic beams only  

 Synchrotron Light Monitors  

 Summary 
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Optical Transition Radiation OTR 

 

 

 

 

 

Optical transition radiation is  emitted by  
charged particle passage through a material boundary. 

Electrodynamics field configuration 

changes during the passage: 

 Polarization of the medium 

 emission of energy 

Description by  

classical electrodynamics & relativity: 
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2

3

2
0

2

4 






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W: energy emitted in solid angle  

: angle of emission 

 : Lorentz factor  

ω: angular frequency intervall Eph=2πhω 

 Insertion of thin Al-foil under 45o  

 Observation of low light by CCD. 
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Optical Transition Radiation: Angular Photon Distribution 

 

 

 

 

 

Photon distribution 

within a solid angle d and  

Wavelength interval begin to end  

 Detection: Optical 400 nm <  < 800 nm 

   using image intensified CCD 

 Larger signal for relativistic beam  >> 1 

 Angular focusing for  >> 1 

  well suited for e- beams 

  p-beam only for Ekin>10 GeV  (>10) 

 Profile by focusing to screen 

 Beam angular distribution by focusing on infinity 

    due to emission dependence on beam angular distribution. 
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OTR-Monitor: Technical Realization and Results 

Example of realization at TERATRON: 

 Insertion of foil  
     e.g. 5 m Kapton coated  with 0.1m Al 
Advantage: thin foil  low heating & straggling 
           2-dim image visible 

 

V.E. Scarpine (FNAL) et al., BIW’06  

rad-hard 
camera 

Beam 

pipe 

Window 

Filter 

wheel 

Lens 

 = 0.66 mm 

 = 1.03 mm 

Results at FNAL-TEVATRON synchrotron  

with 150 GeV proton  

Using fast camera: Turn-by-turn measurement 
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Comparison between Scintillation Screens and OTR 

 

 

 

 

 

OTR: electrodynamic process → beam intensity linear to # photons 

Scint. Screen:  complex atomic process → saturation possible 

OTR: thin foil Al or Al on Mylar, down to 0.25 μm thickness 

           → minimization of beam scattering (Al is low Z-material) 

Scint. Screen: thickness  1 mm inorganic, fragile material, not radiation hard 

OTR: low number of photons → expensive image intensified CCD 

Scint. Screen: large number of photons → simple CCD sufficient 

OTR: complex angular photon distribution → resolution limited 

Scint. Screen: isotropic photon distribution → simple interpretation 

OTR: beam angular distribution measurable→ beam emittance 

Scint. Screen: no information concerning the beam angular distribution 

OTR: large γ needed → e−-beam with Ekin > 100 MeV, proton-beam with Ekin > 100 GeV 

Scint. Screen: for all beams 



L. Groening, Sept. 15th, 2003 GSI-Palaver, Dec. 10th, 2003, A dedicated proton accelerator for  p-physics at the future GSI facilities Peter Forck, JUAS Archamps          Beam Profile Measurement  44 

Outline:      

 Scintillation screens:  

   emission of light, universal  usage, limited dynamic range  

 SEM-Grid: emission of electrons, workhorse, limited resolution   

 Wire scanner: emission of electrons, workhorse, scanning method   

 Ionization Profile Monitor and Beam Induced Fluorescence Monitor:  

    secondary particle detection from interaction beam-residual gas   

 Optical Transition Radiation:  

    crossing optical boundary, for relativistic beams only   

 Synchrotron Light Monitors 

    photon detection of emitted synchrotron light in optical and x-ray range 

 Summary 
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Synchrotron Light Monitor 

 

 

 

 

 

An electron bent (i.e. accelerated) by a dipole magnet emit synchrotron light.  

This light is emitted  

into a cone of   

opening 2/ in lab-frame. 

Well suited for rel. e- 

 For protons:  

Only for energies E>100 GeV  

The light is focused to  a 

intensified CCD. 

Advantage:  

Signal anyhow available! 

2

4

 :Power



P
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-beam 

dipole 

Realization of a Synchrotron Light Monitor 

 

 

 

 

 

Extracting out of the beam’s plane by a (cooled) mirror 

→ Focus to a slit + wavelength filter for optical wavelength 

→ Image intensified CCD camera 

Example: CERN LEP-monitor with bending radius 3.1 km (blue or near UV) 

e--beam 
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Result from a Synchrotron Light Monitor 

 

 

 

 

 

Example: Synchrotron radiation facility APS accumulator ring and blue wavelength: 

Advantage: Direct measurement of 2-dim distribution, only mirror installed in the vacuum pipe 

Realization: Optics outside of vacuum pipe 

Disadvantage: Resolution limited by the diffraction due to finite apertures in the optics. 

 

 
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The Artist View of a Synchrotron Light Monitor 
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Diffraction Limit for a Synchrotron Light Monitor  

 

 

 

 

 

Use of optical wavelength and CCD: λ above critical λcrit (spectrum fall-off). 

Example 1:1 image: Cone of emission for horizontally polarized light: α = 0.41 (λ/ρ)1/3 

General Fraunhofer diffraction limit (given by emission cone):  

Opening angle of optics: D = 2α · L 

Diffraction pattern with  

LD /2


 

  3/12 /6.0  

A good resolution for: 

 large dipole bending radius ρ, but fixed by the accelerator 

 short wavelength, but good optics only for λ > 300 nm 
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Synchrotron Light Monitor overcoming Diffraction Limit 

 

 

 

 

 

The diffraction limit is  

Possible improvements: 

 Shorter wavelength: Using x-rays and an aperture of Ø 1mm 

      → ‘x-ray pin hole camera’. 

 Interference technique: At optical wavelength using a double slit 

      → interference fringes with resolution down to μm range. 

  3/12 /6.0  
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x-ray Pin-Hole Camera: Installation 

The diffraction limit is                                          shorter wavelength by x-rays.   3/12 /6.0  
 

 

 

 

 

Example: PETRA III 

From K. Wittenburg, DESY 
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x-ray Pin-Hole Camera: Installation 

The diffraction limit is                                          shorter wavelength by x-rays.   3/12 /6.0  
 

 

 

 

 

Example: PETRA III 

From K. Wittenburg, DESY 
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x-ray pin-hole Camera: x-ray Detector 

 

 

 

 

 

x-ray optics  scintillator detector (shifting x-ray to optical light)  CCD camera 

From K. Wittenburg, DESY 

Example: PETRA III 

 Pinhole with  20 µm  

     or novel focusing device 

 monochromator (silicon single crystal)  

 scintillator to convert  

     x-ray to optical photons 

 CCD sensor 

Commercial  

x-ray camera               

(Hamamatsu):  
=

5
0

 µ
m

 

=47 µm 
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Summary for Beam Profile 

 

 

 

 

 

Different techniques are suited for different beam parameters: 

e−-beam: typically Ø 0.3 to 3 mm, protons: typically Ø 3 to 30 mm 

Intercepting  non-intercepting methods 

Direct observation of electrodynamics processes: 

 Optical synchrotron radiation monitor: non-destructive, for e−-beams, complex, limited res. 

 X-ray synchrotron radiation monitor: non-destructive, for  e−-beams, very complex 

 OTR screen: nearly non-destructive, large relativistic γ needed, e−-beams mainly 

Detection of secondary photons, electrons or ions: 

 Scintillation screen: destructive, large signal, simple, all beams 

  Ionization profile monitor: non-destructive, expensive, limited resolution, for protons 

  Residual fluorescence monitor: non-destructive, limited signal strength, for protons 

Wire based electronic methods: 

 SEM-grid: partly destructive, large signal and dynamic range, limited resolution 

 Wire scanner: partly destructive, large signal and dynamics, high resolution, slow scan. 


