Measurement of transverse Emittance

The emittance characterizes the whole beam quality, assuming linear behavior as described by second order differential equation.
It is defined within the phase space as: $\varepsilon_{x}=\frac{1}{\pi} \int_{A} d x d x^{\prime}$
The measurement is based on determination of:
either profile width σ_{x} and angular width $\sigma_{x}{ }^{\prime}$ at one location or σ_{x} at different locations and linear transformations.

Different devices are used at transfer lines:
$>$ Lower energies $\boldsymbol{E}_{\boldsymbol{k i n}}<100 \mathrm{MeV} / \mathrm{u}$: slit-grid device, pepper-pot
(suited in case of non-linear forces).
> All beams: Quadrupole variation, 'three grid' method using linear transformations (not well suited in the presence of non-linear forces)
Synchrotron: lattice functions results in stability criterion
\Rightarrow beam width delivers emittance: $\quad \varepsilon_{x}=\frac{1}{\beta_{x}(s)}\left[\sigma_{x}^{2}-\left(D(s) \frac{\Delta p}{p}\right)\right]$ and $\varepsilon_{y}=\frac{\sigma_{y}^{2}}{\beta_{y}(s)}$

Definition of transverse Emittance

The emittance characterizes the whole beam quality: $\quad \varepsilon_{x}=\frac{1}{\pi} \int_{A} d x d x^{\prime}$
Ansatz:
Beam matrix at one location: $\quad \boldsymbol{\sigma}=\left(\begin{array}{ll}\sigma_{11} & \sigma_{12} \\ \sigma_{12} & \sigma_{22}\end{array}\right)=\varepsilon \cdot\left(\begin{array}{cc}\beta & -\alpha \\ -\alpha & \gamma\end{array}\right)$ with $\overrightarrow{\mathrm{x}}=\binom{x}{x^{\prime}}$ It describes a 2 -dim probability distr.

The value of emittance is:

$$
\varepsilon_{x}=\sqrt{\operatorname{det} \boldsymbol{\sigma}}=\sqrt{\sigma_{11} \sigma_{22}-\sigma_{12}^{2}}
$$

For the profile and angular measurement:

$$
\begin{aligned}
& x_{\sigma}=\sqrt{\sigma_{11}}=\sqrt{\varepsilon \beta} \text { and } \\
& x_{\sigma}^{\prime}=\sqrt{\sigma_{22}}=\sqrt{\varepsilon \gamma} \\
& \text { Geometrical interpretation: }
\end{aligned}
$$

All points \boldsymbol{x} fulfilling $\boldsymbol{x}^{\boldsymbol{t}} \cdot \boldsymbol{\sigma}{ }^{\mathbf{- 1}} \cdot \boldsymbol{x}=\mathbf{1}$ are located on a ellipse
$\sigma_{22} x^{2}-2 \sigma_{12} x x^{6}+\sigma_{11} x^{62}=\operatorname{det} \sigma=\varepsilon_{x}^{2}$

The Emittance for Gaussian Beams

The density function for a 2-dim Gaussian distribution is:

$$
\begin{aligned}
& \rho\left(x, x^{\prime}\right)=\frac{1}{2 \pi \epsilon} \exp \left[-\frac{1}{2} \vec{x}^{T} \sigma^{-1} \vec{x}\right] \\
& =\frac{1}{2 \pi \epsilon} \exp \left[\frac{-1}{2 \operatorname{det} \sigma}\left(\sigma_{22} x^{2}-2 \sigma_{12} x x^{\prime}+\sigma_{11} x^{\prime 2}\right)\right]
\end{aligned}
$$

It describes an ellipse with the characteristics profile and angle Gaussian distribution of width

$$
\begin{aligned}
& x_{\sigma} \equiv \sqrt{\left\langle x^{2}\right\rangle}=\sqrt{\sigma_{11}} \text { and } \\
& x_{\sigma}^{\prime} \equiv \sqrt{\left\langle x^{\prime 2}\right\rangle}=\sqrt{\sigma_{22}}
\end{aligned}
$$

and the correlation or covariance

$$
\operatorname{cov} \equiv \sqrt{\left\langle x x^{\prime}\right\rangle}=\sqrt{\sigma_{12}}
$$

For $\mathbf{A}=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$ it is $\mathbf{A}^{-1}=\frac{1}{a d-b c}\left(\begin{array}{cc}d & -b \\ -c & a\end{array}\right)$
assuming $\operatorname{det}(\mathbf{A})=a d-b c \neq 0 \Leftrightarrow$ matrix invertible

The Emittance for Gaussian and non-Gaussian Beams

The beam distribution can be non-Gaussian, e.g. at:
$>$ beams behind ion source
$>$ space charged dominated beams at LINAC \& synchrotron
$>$ cooled beams in storage rings

General description of emittance

 using terms of 2-dim distribution:It describes the value for 1 stand. derivation

Covariance

i.e. correlation
$\langle x\rangle \equiv \mu=\frac{\iint x \cdot \rho\left(x, x^{\prime}\right) d x d x^{\prime}}{\iint \rho\left(x, x^{\prime}\right) d x d x^{\prime}}$

$$
\left\langle x^{\prime}\right\rangle \equiv \mu^{\prime}=\frac{\iint x^{\prime} \cdot \rho\left(x, x^{\prime}\right) d x d x^{\prime}}{\iint \rho\left(x, x^{\prime}\right) d x d x^{\prime}}
$$

For discrete distribution:
$\left\langle x^{n}\right\rangle=\frac{\iint(x-\mu)^{n} \cdot \rho\left(x, x^{\prime}\right) d x d x^{\prime}}{\iint \rho\left(x, x^{\prime}\right) d x d x^{\prime}} \quad\left\langle x^{\prime n}\right\rangle=\frac{\iint\left(x^{\prime}-\mu^{\prime}\right)^{n} \cdot \rho\left(x, x^{\prime}\right) d x d x^{\prime}}{\iint \rho\left(x, x^{\prime}\right) d x d x^{\prime}} \quad\langle x\rangle=\frac{i, j}{\sum_{i, j} \rho(i, j)}$
covariance : $\left\langle x x^{\prime}\right\rangle=\frac{\iint(x-\mu)\left(x^{\prime}-\mu^{\prime}\right) \cdot \rho\left(x, x^{\prime}\right) d x d x^{\prime}}{\iint \rho\left(x, x^{\prime}\right) d x d x^{\prime}}$
and correspondingly for all other moments

The Emittance for Gaussian and non-Gaussian Beams

The beam distribution can be non-Gaussian, e.g. at:
$>$ beams behind ion source
$>$ space charged dominated beams at LINAC \& synchrotron
Covariance
$>$ cooled beams in storage rings

General description of emittance

using terms of 2-dim distribution:
It describes the value for 1 stand. derivation

For Gaussian beams only:
$\varepsilon_{r m s} \leftrightarrow$ interpreted as area containing a fraction f of ions: $\varepsilon(f)=-2 \pi \varepsilon_{r m s} \cdot \ln (1-f)$

factor to $\epsilon_{r m s}$	$1 \cdot \epsilon_{r m s}$	$\pi \cdot \epsilon_{r m s}$	$2 \pi \cdot \epsilon_{r m s}$	$4 \pi \cdot \epsilon_{r m s}$	$6 \pi \cdot \epsilon_{r m s}$	$8 \pi \cdot \epsilon_{r m s}$
faction of beam $f[\%]$	15	39	63	86	95	98

Care: no common definition of emittance concerning the fraction f

Outline:

$>$ Definition and some properties of transverse emittance
$>$ Slit-Grid device: scanning method scanning slit \rightarrow beam position \& grid \rightarrow angular distribution
$>$ Pepper-pot device: single shot device
$>$ Quadrupole strength variation and position measurement
$>$ Summary

The Slit-Grid Measurement Device

Slit-Grid: Direct determination of position and angle distribution.
Used for protons/heavy ions with $E_{\text {kin }}<100 \mathrm{MeV} / \mathrm{u} \Rightarrow$ range $R<1 \mathrm{~cm}$.
Hardware

Slit: position $\boldsymbol{P}(\boldsymbol{x})$ with typical width: 0.1 to 0.5 mm
Distance: 10 cm to 1 m (depending on beam velocity)
SEM-Grid: angle distribution $\boldsymbol{P}\left(\boldsymbol{x}^{\prime}\right)$

Slit \& SEM-Grid

Slit with e.g. 0.1 mm thickness
\rightarrow Transmission only from $\boldsymbol{\Delta x}$.
Example: Slit of width 0.1 mm (defect)
Moved by stepping motor, 0.1 mm resolution

Beam surface interaction: e^{-}emission
\rightarrow measurement of current.
Example: 15 wire spaced by 1.5 mm :

Each wire is equipped with one I / U converter different ranges settings by $\boldsymbol{R}_{\boldsymbol{i}}$
\rightarrow very large dynamic range up to 10^{6}.

Display of Measurement Results

The distribution of the ions is depicted as a function of
$>$ Position [mm]
$>$ Angle [mrad]
The distribution can be visualized by
\Rightarrow Mountain plot
$>$ Contour plot
Calc. of $2^{\text {nd }}$ moments $\left\langle x^{2}\right\rangle,\left\langle x^{\prime 2}\right\rangle \&\left\langle x x^{\prime}\right\rangle$
Emittance value $\varepsilon_{r m s}$ from

$$
\varepsilon_{r m s}=\sqrt{\left\langle x^{2}\right\rangle\left\langle x^{\prime 2}\right\rangle-\left\langle x x^{\prime}\right\rangle^{2}}
$$

\Rightarrow Problems:

$>$ Finite binning results in limited resolution
\rangle Background \rightarrow large influence on $\left\langle x^{2}\right\rangle,\left\langle x^{2,}\right\rangle$ and $\left.\langle\boldsymbol{x} \boldsymbol{x}\rangle\right\rangle$

Or fit of distribution i.e. ellipse to data
\Rightarrow Effective emittance only

Beam: $\mathrm{Ar}^{4+}, 60 \mathrm{KeV}, 15 \mu \mathrm{~A}$
at Spiral2 Phoenix ECR source.
Plot from P. Ausset, DIPAC 2009

The Resolution of a Slit-Grid Device

The width of the slit $\boldsymbol{d}_{\text {slit }}$ gives the resolution in space $\boldsymbol{\Delta x}=\boldsymbol{d}_{\text {slit }}$.
The angle resolution is $\Delta x^{\prime}=\left(d_{\text {slit }}+2 r_{\text {wire }}\right) / d$
\Rightarrow discretization element $\boldsymbol{\Delta x} \cdot \boldsymbol{\Delta} \boldsymbol{x}^{\prime}$.
By scanning the SEM-grid the angle resolution can be improved.
Problems for small beam sizes or parallel beams.

Hardware

For pulsed LINACs: Only one measurement each pulse \rightarrow long measuring time required.

The Noise Influence for Emittance Determination

A real measurement of beamlets contains:
$>$ Noise i.e. fluctuation of the output
$>$ Bias i.e. electrical offset from amplifier

\rightarrow Strong influence of noise reduction to
numerical values of $\langle\boldsymbol{x}\rangle,\left\langle\boldsymbol{x}{ }^{\boldsymbol{2}\rangle}\right\rangle$ and $\langle\boldsymbol{x} \boldsymbol{x} \boldsymbol{\prime}\rangle$ and on $\varepsilon_{r m s}$ \Rightarrow Algorithm \& cut-level must be given for evaluation General: Typical error $\boldsymbol{\Delta} \varepsilon / \varepsilon>10 \%$

Example: Dependence of $\varepsilon_{r m s}$ on threshold value

$$
\left\langle x^{\prime 2}\right\rangle=\frac{\int x^{\prime 2} \cdot \rho\left(x, x^{\prime}\right) d x d x^{\prime}}{\int \rho\left(x, x^{\prime}\right) d x d x^{\prime}} \text { for continous values }
$$

$$
\begin{aligned}
& =\frac{\sum_{i, j} x_{i j}^{\prime}{ }^{2} \cdot P\left(x_{i j}, x_{i j}^{\prime}\right)}{\sum_{i, j} P\left(x_{i j}, x_{i j}^{\prime}\right)} \text { for discrete values } \\
\varepsilon_{r m s} & =\sqrt{\left\langle x^{2}\right\rangle\left\langle x^{\prime 2}\right\rangle-\left\langle x x^{\prime}\right\rangle^{2}}
\end{aligned}
$$

Outline:

$>$ Definition and some properties of transverse emittance
$>$ Slit-Grid device: scanning method scanning slit \rightarrow beam position \& grid \rightarrow angular distribution
$>$ Pepper-pot device: single shot device hole-plate \rightarrow beam position \& screen \rightarrow angular distribution
$>$ Quadrupole strength variation and position measurement
$>$ Summary

The Pepperpot Emittance Device

$>$ For pulsed LINAC: Measurement within one pulse is an advantage
$>$ If horizontal and vertical direction coupled $\rightarrow 2$-dim evaluation required

Good spatial resolution if many holes are illuminated.
Good angle resolution only if spots do not overlap.

Partly from H.R. Kremers et al., ECRIS 2010

The Pepperpot Emittance Device at GSI UNILAC

Example GSI-LINAC 0.12 to $11 \mathrm{MeV} / \mathrm{u}$:
\rightarrow Pepper-pot: 15×15 holes with $\emptyset 0.1 \mathrm{~mm}$
on a $50 \times 50 \mathrm{~mm}^{2}$ copper plate
$>$ Distance: pepper-pot-screen: 25 cm
$>$ Screen: $\mathrm{Al}_{2} \mathrm{O}_{3}$, Ø 50 mm
with zoom
ion beam

Good spatial resolution if many holes are illuminated. Good angle resolution only if spots do not overlap.

Result of a Pepperpot Emittance Measurement

Example: Ar^{1+} ion beam at $1.4 \mathrm{MeV} / \mathrm{u}$, screen image from single shot at GSI:

Data analysis:

Projection on
horizontal and vertical plane
\rightarrow analog to slit-grid.

The Artist View of a Pepperpot Emittance Device

Outline:

$>$ Definition and some properties of transverse emittance
$>$ Slit-Grid device: scanning method scanning slit \rightarrow beam position \& grid \rightarrow angular distribution
$>$ Pepper-pot device: single shot device hole-plate \rightarrow beam position \& screen \rightarrow angular distribution
$>$ Quadrupole strength variation and position measurement emittance from several profile measurement and beam optical calculation
$>$ Summary

Particle Trajectory and Characterization of many Particles

Definition of Offset and Divergence

Horizontal and vertical coordinates at $s=0$:
$>\boldsymbol{x}:$ Offset from reference orbit in [mm]
$>x^{\prime}$: Angle of trajectory in unit [mrad]

$$
x^{\prime}=d x / d s
$$

Assumption: par-axial beams:

$>\boldsymbol{x}$ is small compared to $\boldsymbol{\rho}_{\boldsymbol{0}}$
$>$ Small angle with $\boldsymbol{p}_{\boldsymbol{x}} / \boldsymbol{p}_{s} \ll \mathbf{1}$
Longitudinal coordinate:
$>$ Longitudinal orbit difference: $\boldsymbol{l}=\boldsymbol{-} \boldsymbol{v}_{\boldsymbol{0}} \cdot\left(\boldsymbol{t}-\boldsymbol{t}_{\boldsymbol{0}}\right)$ in unit [mm]
$>$ Momentum deviation: $\boldsymbol{\delta}=\left(\boldsymbol{p}-\boldsymbol{p}_{\boldsymbol{0}}\right) / \boldsymbol{p}_{\boldsymbol{0}}$ sometimes in unit [mrad] $=[\%]$
For continuous beam: l has no meaning \Rightarrow set $l \equiv 0 \quad!$
Reference particle: no horizontal and vertical offset $\boldsymbol{x} \equiv \boldsymbol{y} \equiv 0$ and $\boldsymbol{l} \equiv 0$ for all \boldsymbol{s}

Definition of Coordinates

The basic vector is $\mathbf{6}$ dimensional:

$$
\vec{x}(s)=\left(\begin{array}{c}
x \\
x^{\prime} \\
y \\
y^{\prime} \\
l \\
\delta
\end{array}\right)=\left(\begin{array}{c}
\text { hori. spatial deviation } \\
\text { horizontal divergence } \\
\text { vert. spatial deviation } \\
\text { vertical divergence } \\
\text { longitudinal deviation } \\
\text { momentum deviation }
\end{array}\right)=\left(\begin{array}{c}
{[\mathrm{mm}]} \\
{[\mathrm{mrad}]} \\
{[\mathrm{mm}]} \\
{[\mathrm{mrad}]} \\
{[\mathrm{mm}]} \\
{[\% \mathrm{o}]}
\end{array}\right)
$$

$\left.\begin{array}{l}\text { The transformation } \\ \text { from a location } s_{0} \text { to } s_{1} \text { is given } \\ \text { by the Transfer Matrix } \mathbf{R}\end{array} \quad \begin{array}{llllll}\vec{x}\left(s_{1}\right)=\mathrm{R}(\mathrm{s}) \cdot \vec{x}\left(s_{0}\right)\end{array}\right)=\left(\begin{array}{lllll}R_{11} & R_{12} & R_{13} & R_{14} & R_{15} \\ R_{21} & R_{22} & R_{23} & R_{24} & R_{25} \\ R_{26} \\ R_{31} & R_{32} & R_{33} & R_{34} & R_{35} \\ R_{41} & R_{42} & R_{43} & R_{44} & R_{45} \\ R_{46} \\ R_{51} & R_{52} & R_{53} & R_{54} & R_{55} \\ R_{56} \\ R_{61} & R_{62} & R_{63} & R_{64} & R_{65} \\ \text { Remark: At ring accelerator a } \\ \text { comparable (i.e. a bit different) } \\ \text { matrix is called } \mathbf{M}\end{array}\right) \cdot\left(\begin{array}{c}x_{0} \\ x_{0}{ }^{\prime} \\ y_{0} \\ y_{0}{ }^{\prime} \\ l_{0} \\ \delta_{0}\end{array}\right)$

Some Properties of the Transfer Matrix

$>$ The transformation can be done successive: with with $\mathbf{R}_{1}=\mathbf{R}\left(s_{0} \rightarrow s_{1}\right), \ldots, \mathbf{R}_{n}=\mathbf{R}\left(s_{n-1} \rightarrow s_{n}\right)$ It is $\quad \mathbf{R}=\mathbf{R}_{\boldsymbol{n}} \cdot \mathbf{R}_{n-1} \cdot \ldots \cdot \mathbf{R}_{I}$
> The elements describe the coupling between the components
$R_{11}=(x \mid x), R_{12}=\left(x \mid x^{`}\right), R_{13}=(x \mid y), R_{14}=\left(x \mid y^{`}\right), R_{15}=(x \mid l), R_{16}=(x \mid \delta)$ $R_{21}=\left(x^{‘} \mid x\right), R_{22}=\left(x^{‘} \mid x^{\bullet}\right) \ldots .$.
$>$ If all forces are symmetric along the reference orbit than the horizontal and vertical plane are decoupled:
\Rightarrow sub-matrix is sufficient
$\mathbf{R}=\left(\begin{array}{cccccc}(x \mid x) & \left(x \mid x^{\prime}\right) & 0 & 0 & 0 & (x \mid \delta) \\ \left(x^{\prime} \mid x\right) & \left(x^{\prime} \mid x^{\prime}\right) & 0 & 0 & 0 & \left(x^{\prime} \mid \delta\right) \\ 0 & 0 & (y \mid y) & \left(y \mid y^{\prime}\right) & 0 & 0 \\ 0 & 0 & \left(y^{\prime} \mid y\right) & \left(y^{\prime} \mid y^{\prime}\right) & 0 & 0 \\ (l \mid x) & \left(l \mid x^{\prime}\right) & 0 & 0 & 1 & (l \mid \delta) \\ 0 & 0 & 0 & 0 & 0 & 1\end{array}\right)$
$>$ It is $\boldsymbol{\operatorname { d e t }}(\mathbf{R})=\mathbf{1}$ (Liouville's Theorem) $\Rightarrow \mathbf{R}$ is invertible
$>$ For un-bunched beams: delete row 5 and column 5

Conservation of Emittance

Liouville's Theorem:

The phase space density can not changes with conservative e.g. linear forces.
The beam distribution at one location s_{0} is described by the beam matrix $\sigma\left(s_{0}\right)$
This beam matrix is transported from location s_{0} to \boldsymbol{s}_{1} via the transfer matrix

$$
\sigma\left(s_{1}\right)=\mathbf{R} \cdot \sigma\left(s_{0}\right) \cdot \mathbf{R}^{T}
$$

6-dim beam matrix with decoupled horizontal and vertical plane:

$$
\sigma=\left(\begin{array}{cccccc}
\sigma_{11} & \sigma_{12} & 0 & 0 & \sigma_{15} & \sigma_{16} \\
\sigma_{12} & \sigma_{22} & 0 & 0 & \sigma_{25} & \sigma_{26} \\
0 & 0 & \sigma_{33} & \sigma_{34} & 0 & 0 \\
0 & 0 & \sigma_{34} & \sigma_{44} & 0 & 0 \\
\sigma_{15} & \sigma_{25} & 0 & 0 & \sigma_{55} & \sigma_{56} \\
\sigma_{16} & \sigma_{26} & 0 & 0 & \sigma_{56} & \sigma_{66}
\end{array}\right) \quad \begin{gathered}
\text { The beam width concerning } \\
\text { the three coordinates are: } \\
x_{r m s}=\sqrt{\sigma_{11}} \\
y_{r m s}=\sqrt{\sigma_{33}} \\
l_{r m s}=\sqrt{\sigma_{55}}
\end{gathered}
$$

Some Examples for linear Transformations

Without dispersion one can use the 2 -dim sub-space $\left(x, x^{\prime}\right)$.

- Drift with length $L: \mathbf{R}_{\text {drift }}=\left(\begin{array}{cc}1 & L \\ 0 & 1\end{array}\right)$
- Horizontal focusing with quadrupole constant k and eff. length L :

$$
\mathbf{R}_{\text {focus }}=\left(\begin{array}{cc}
\cos \sqrt{k} L & \frac{1}{\sqrt{k}} \sin \sqrt{k} L \\
-\frac{1}{\sqrt{k}} \sin \sqrt{k} L & \cos \sqrt{k} L
\end{array}\right)
$$

- Horizontal de-focusing with quadrupole constant k and eff. length L :

$$
\mathbf{R}_{\text {defocus }}=\left(\begin{array}{cc}
\cosh \sqrt{k} L & \frac{1}{\sqrt{k}} \sinh \sqrt{k} L \\
-\frac{1}{\sqrt{k}} \sinh \sqrt{k} L & \cosh \sqrt{k} L
\end{array}\right)
$$

For a (ideal) quadrupole with field gradient $g=B_{\text {pole }} / a, B_{\text {pole }}$ is the field at the pole and a the aperture, the quadrupole constant $k=|g| /(B \rho)_{0}$ for a magnetic rigidity $(B \rho)_{0}$.

Emittance Measurement by Quadrupole Variation

From a profile determination, the emittance can be calculated via linear transformation, if a well known and constant distribution (e.g. Gaussian) is assumed.

Measurement of transverse Emittance

- The beam width $x_{\max }$ at s_{1} is measured, and therefore $\sigma_{11}\left(1, k_{i}\right)=x_{\text {max }}^{2}\left(k_{i}\right)$.
- Different focusing of the quadrupole $k_{1}, k_{2} \ldots k_{n}$ is used: $\Rightarrow \mathbf{R}_{\text {focus }}\left(k_{i}\right)$, including the drift, the transfer matrix is changed $\mathbf{R}\left(k_{i}\right)=\mathbf{R}_{\text {drift }} \cdot \mathbf{R}_{\text {focus }}\left(k_{i}\right)$.
- Task: Calculation of beam matrix $\sigma(0)$ at entrance s_{0} (size and orientation of ellipse)
- The transformations of the beam matrix are: $\sigma(1, k)=\mathbf{R}(k) \cdot \sigma(0) \cdot \mathbf{R}^{\mathrm{T}}(k)$.
\Longrightarrow Resulting in a redundant system of linear equations for $\sigma_{i j}(0)$:
$\sigma_{11}\left(1, k_{1}\right)=R_{11}^{2}\left(k_{1}\right) \cdot \sigma_{11}(0)+2 R_{11}\left(k_{1}\right) R_{12}\left(k_{1}\right) \cdot \sigma_{12}(0)+R_{12}^{2}\left(k_{1}\right) \cdot \sigma_{22}(0) \quad$ focusing k_{1}
$\sigma_{11}\left(1, k_{n}\right)=R_{11}^{2}\left(k_{n}\right) \cdot \sigma_{11}(0)+2 R_{11}\left(k_{n}\right) R_{12}\left(k_{n}\right) \cdot \sigma_{12}(0)+R_{12}^{2}\left(k_{n}\right) \cdot \sigma_{22}(0)$ focusing k_{n}
- To learn something on possible errors, $n>3$ settings have to be performed.

A setting with a focus close to the SEM-grid should be included to do a good fit.

- Assumptions:
- Only elliptical shaped emittance can be obtained.
- No broadening of the emittance e.g. due to space-charge forces.
- If not valid: A self-consistent algorithm has to be used.

Measurement of transverse Emittance

Using the 'thin lens approximation' i.e. the quadrupole has a focal length of f :
$\mathrm{R}_{\text {focus }}(K)=\left(\begin{array}{cc}1 & 0 \\ -1 / f & 1\end{array}\right) \equiv\left(\begin{array}{cc}1 & 0 \\ K & 1\end{array}\right) \Rightarrow \mathrm{R}(L, K)=\mathrm{R}_{\text {drift }}(L) \cdot \mathrm{R}_{\text {focus }}(K)=\left(\begin{array}{cc}1+L K & L \\ K & 1\end{array}\right)$
Example: Square of the beam width at Measurement of $\sigma(\mathbf{1 , K})=\mathbf{R}(K) \cdot \sigma(\mathbf{0}) \cdot \mathbf{R}^{\mathbf{T}}(K)$ ELETTRA $100 \mathrm{MeV} \mathrm{e}^{-}$Linac, YAG:Ce: $\quad \sigma_{11}(1, K)=L^{2} \sigma_{11}(0) \cdot K^{2}$

$$
\begin{aligned}
& +2 \cdot\left(L \sigma_{11}(0)+L^{2} \sigma_{12}(0)\right) \cdot K \\
& +L^{2} \sigma_{22}(0)+\sigma_{11}(0) \\
\equiv & a \cdot K^{2}-2 a b \cdot K+a b^{2}+c
\end{aligned}
$$

The σ-matrix at quadrupole is:

$$
\begin{aligned}
\sigma_{11}(0) & =\frac{a}{L^{2}} \\
\sigma_{12}(0) & =-\frac{a}{L^{2}}\left(\frac{1}{L}+b\right) \\
\sigma_{22}(0) & =\frac{1}{L^{2}}\left(a b^{2}+c+\frac{2 a b}{L}+\frac{a}{L^{2}}\right) \\
\epsilon=\sqrt{\operatorname{det} \sigma(0)} & =\sqrt{\sigma_{11}(0) \sigma_{22}(0)-\sigma_{12}^{2}(0)}=\sqrt{a c} / L^{2}
\end{aligned}
$$

G. Penco et al., EPAC'08

The 'Three Grid Method' for Emittance Measurement

Instead of quadrupole variation, the beam width is measured at different locations:

The procedure is:

$>$ Beam width $x(i)$ measured at the locations s_{i}
\Rightarrow beam matrix element

$$
x^{2}(i)=\sigma_{11}(i)
$$

$>$ The transfer matrix $\mathbf{R}(i)$ is known. (without dipole a 3×3 matrix.)
$>$ The transformations are:

$$
\sigma(i)=\mathbf{R}(i) \sigma(0) \mathbf{R}^{\mathbf{T}^{(i)}}
$$

\Rightarrow redundant equations:
quadrupole magnet
profile measurement
$\sigma_{11}(1)=R_{11}^{2}(1) \cdot \sigma_{11}(0)+2 R_{11}(1) R_{12}(1) \cdot \sigma_{12}(0)+R_{12}^{2}(1) \cdot \sigma_{22}(0) \quad \mathbf{R}(1): s_{0} \rightarrow s_{1}$
$\sigma_{11}(2)=R_{11}^{2}(2) \cdot \sigma_{11}(0)+2 R_{11}(2) R_{12}(2) \cdot \sigma_{12}(0)+R_{12}^{2}(2) \cdot \sigma_{22}(0) \quad \mathbf{R}(2): s_{0} \rightarrow s_{2}$
$\sigma_{11}(n)=R_{11}^{2}(n) \cdot \sigma_{11}(0)+2 R_{11}(n) R_{12}(n) \cdot \sigma_{12}(0)+R_{12}^{2}(n) \cdot \sigma_{22}(0) \quad \mathbf{R}(n): s_{0} \rightarrow s_{n}$

Peter Forck, JUAS Archamps
27

Results of a 'Three Grid Method' Measurement

Solution: Solving the linear equations like for quadrupole variation or fitting the profiles with linear optics code (e.g. TRANSPORT, WinAgile, MadX).

Example: The hor. and vert. beam envelope and the beam width at a transfer line:

Assumptions: $>$ constant emittance, in particular no space-charge broadening
$>100 \%$ transmission i.e. no loss due to vacuum pipe scraping
$>$ no misalignment, i.e. beam center equals center of the quadrupoles.

Summary for transverse Emittance Measurement

Emittance measurements are very important for comparison to theory.
It includes size (value of ε) and orientation in phase space ($\sigma_{i j}$ or $\boldsymbol{\alpha}, \boldsymbol{\beta}$ and γ) (three independent values)
Techniques for transfer lines (synchrotron: width measurement sufficient):
Low energy beams \rightarrow direct measurement of x - and x^{\prime}-distribution
$>$ Slit-grid: movable slit $\rightarrow \boldsymbol{x}$-profile, grid $\rightarrow x^{\prime}$-profile
>Pepper-pot: holes $\rightarrow \boldsymbol{x}$-profile, scintillation screen $\rightarrow \boldsymbol{x}$ '-profile
All beams \rightarrow profile measurement + linear transformation:
$>$ Quadrupole variation: one location, different setting of a quadrupole
$>$ 'Three grid method': different locations
$>$ Assumptions: $>$ well aligned beam, no steering
$>$ no emittance blow-up due to space charge.

