Measurement of transverse Emittance

The emittance characterizes the whole beam quality, assuming linear behavior as described by second order differential equation.

It is defined within the phase space as: $\varepsilon_x = \frac{1}{\pi} \int_A dx dx'$

The measurement is based on determination of:

either profile width σ_x and angular width σ_x' at one location or σ_x at different locations and linear transformations.

Different devices are used at transfer lines:

- \triangleright Lower energies E_{kin} < 100 MeV/u: slit-grid device, pepper-pot (suited in case of non-linear forces).
- ➤ All beams: Quadrupole variation, 'three grid' method using linear transformations (**not** well suited in the presence of non-linear forces)

Synchrotron: lattice functions results in stability <u>criterion</u>

$$\Rightarrow \text{ beam width delivers emittance:} \quad \varepsilon_x = \frac{1}{\beta_x(s)} \left[\sigma_x^2 - \left(D(s) \frac{\Delta p}{p} \right) \right] \text{ and } \quad \varepsilon_y = \frac{\sigma_y^2}{\beta_y(s)}$$

Definition of transverse Emittance

The emittance characterizes the whole beam quality:

 $\varepsilon_x = \frac{1}{1} \int_A dx dx'$

Ansatz:

Beam matrix at one location: $\boldsymbol{\sigma} = \begin{pmatrix} \sigma_{11} & \sigma_{12} \\ \sigma_{12} & \sigma_{22} \end{pmatrix} = \varepsilon \cdot \begin{pmatrix} \beta & -\alpha \\ -\alpha & \gamma \end{pmatrix} \text{ with } \boldsymbol{x} = \begin{pmatrix} x \\ x' \end{pmatrix}$

It describes a 2-dim probability distr.

The value of emittance is:

$$\varepsilon_x = \sqrt{\det \mathbf{\sigma}} = \sqrt{\sigma_{11}\sigma_{22} - \sigma_{12}^2}$$

For the profile and angular measurement:

$$x_{\sigma} = \sqrt{\sigma_{11}} = \sqrt{\varepsilon \beta}$$
 and

$$x'_{\sigma} = \sqrt{\sigma_{22}} = \sqrt{\varepsilon \gamma}$$

Geometrical interpretation:

All points x fulfilling $x^t \cdot \sigma^{-1} \cdot x = 1$ are located on a ellipse

$$\sigma_{22}x^2 - 2\sigma_{12}xx' + \sigma_{11}x'^2 = \det \sigma = \varepsilon_x^2$$

The Emittance for Gaussian Beams

The density function for a 2-dim Gaussian distribution is:

$$\rho(x, x') = \frac{1}{2\pi\epsilon} \exp\left[-\frac{1}{2} \vec{x}^T \sigma^{-1} \vec{x}\right]$$
$$= \frac{1}{2\pi\epsilon} \exp\left[\frac{-1}{2\det\sigma} \left(\sigma_{22}x^2 - 2\sigma_{12}xx' + \sigma_{11}x'^2\right)\right]$$

It describes an ellipse with the characteristics profile and angle Gaussian distribution of width

$$x_{\sigma} \equiv \sqrt{\langle x^2 \rangle} = \sqrt{\sigma_{11}}$$
 and $x'_{\sigma} \equiv \sqrt{\langle x'^2 \rangle} = \sqrt{\sigma_{22}}$

and the correlation or covariance

$$cov \equiv \sqrt{\langle xx' \rangle} = \sqrt{\sigma_{12}}$$

For
$$\mathbf{A} = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$$
 it is $\mathbf{A}^{-1} = \frac{1}{ad - bc} \begin{pmatrix} d & -b \\ -c & a \end{pmatrix}$ assuming $\det(\mathbf{A}) = ad - bc \neq 0 \Leftrightarrow$ matrix invertible

The Emittance for Gaussian and non-Gaussian Beams

The beam distribution can be non-Gaussian, e.g. at:

- beams behind ion source
- > space charged dominated beams at LINAC & synchrotron
- > cooled beams in storage rings

General description of emittance

using terms of 2-dim distribution:

It describes the value for 1 stand. derivation
$$\langle x \rangle \equiv \mu = \frac{\iint x \cdot \rho(x, x') \, dx dx'}{\iint \rho(x, x') \, dx dx'} \qquad \langle x' \rangle \equiv \mu' = \frac{\iint x' \cdot \rho(x, x') \, dx dx'}{\iint \rho(x, x') \, dx dx'}$$

$$\left\langle x^{n} \right\rangle = \frac{\iint (x, x') \, dx dx'}{\iint \rho(x, x') \, dx dx'} \qquad \left\langle x^{n} \right\rangle = \frac{\iint (x' - \mu')^{n} \cdot \rho(x, x')}{\iint \rho(x, x') \, dx dx'}$$

covariance:
$$\langle xx' \rangle = \frac{\int \int (x - \mu)(x' - \mu') \cdot \rho(x, x') \, dx dx'}{\int \int \rho(x, x') \, dx dx'}$$

Covariance i.e. correlation

Variances $= \sqrt{\langle x^2 \rangle \langle x'^2 \rangle - \langle xx' \rangle^2}$

For discrete distribution:

$$\langle x' \rangle \equiv \mu' = \frac{\int \int x \rho(x, x') dx dx'}{\int \int \rho(x, x') dx dx'} \qquad \sum_{i,j} \rho(i, j) \cdot x_i x'_j$$

$$\langle x'^n \rangle = \frac{\int \int (x' - \mu')^n \cdot \rho(x, x') dx dx'}{\int \int \rho(x, x') dx dx'} \qquad \langle x \rangle = \frac{\sum_{i,j} \rho(i, j)}{\sum_{i,j} \rho(i, j)}$$

and correspondingly for all other moments

The Emittance for Gaussian and non-Gaussian Beams

The beam distribution can be non-Gaussian, e.g. at:

- beams behind ion source
- right space charged dominated beams at LINAC & synchrotron

> cooled beams in storage rings

Covariance i.e. correlation

General description of emittance

using terms of 2-dim distribution:

It describes the value for 1 stand, derivation

Variances

For Gaussian beams only:

 $\varepsilon_{rms} \leftrightarrow \text{interpreted as area containing a fraction } f \text{ of ions: } \varepsilon(f) = -2\pi\varepsilon_{rms} \cdot \ln(1-f)$

factor to ϵ_{rms}	$1 \cdot \epsilon_{rms}$	$\pi \cdot \epsilon_{rms}$	$2\pi \cdot \epsilon_{rms}$	$4\pi \cdot \epsilon_{rms}$	$6\pi \cdot \epsilon_{rms}$	$8\pi \cdot \epsilon_{rms}$
faction of beam f [%]	15	39	63	86	95	98

5

Care: no common definition of emittance concerning the fraction f

Outline:

- > Definition and some properties of transverse emittance
- ➤ Slit-Grid device: scanning method
 scanning slit → beam position & grid → angular distribution
- **▶** Pepper-pot device: single shot device
- > Quadrupole strength variation and position measurement
- > Summary

The Slit-Grid Measurement Device

Slit-Grid: Direct determination of position and angle distribution.

Used for protons/heavy ions with $E_{kin} < 100 \text{ MeV/u} \Rightarrow \text{range } R < 1 \text{ cm}$.

Slit: position P(x) with typical width: 0.1 to 0.5 mm

Distance: 10 cm to 1 m (depending on beam velocity)

SEM-Grid: angle distribution P(x')

Slit & SEM-Grid

Slit with e.g. 0.1 mm thickness

 \rightarrow Transmission only from Δx .

Example: Slit of width 0.1 mm (defect)
Moved by stepping motor, 0.1 mm resolution

Beam surface interaction: e⁻ emission

→ measurement of current.

Example: 15 wire spaced by 1.5 mm:

Each wire is equipped with one I/U converter different ranges settings by R_i

 \rightarrow very large dynamic range up to 10^6 .

Display of Measurement Results

The distribution of the ions is depicted as a function of

- ➤ Position [mm]
- ➤ Angle [mrad]

The distribution can be visualized by

- ➤ Mountain plot
- **≻**Contour plot

Calc. of 2nd moments <x²> , <x'²> & <xx'>

Emittance value ε_{rms} from

$$\varepsilon_{rms} = \sqrt{\langle x^2 \rangle \langle x'^2 \rangle - \langle xx' \rangle^2}$$

- ⇒ Problems:
- Finite **binning** results in limited resolution
- **▶ Background** → large influence on $\langle x^2 \rangle$, $\langle x'^2 \rangle$ and $\langle xx' \rangle$

Or fit of distribution i.e. ellipse to data

⇒ Effective emittance only

Beam: Ar⁴⁺, 60 KeV, 15 μA at Spiral2 Phoenix ECR source. Plot from P. Ausset, DIPAC 2009

The Resolution of a Slit-Grid Device

The width of the slit d_{slit} gives the resolution in space $\Delta x = d_{slit}$.

The angle resolution is $\Delta x' = (d_{slit} + 2r_{wire})/d$

 \Rightarrow discretization element $\Delta x \cdot \Delta x'$.

By scanning the SEM-grid the angle resolution can be improved.

Problems for small beam sizes or parallel beams.

For pulsed LINACs: Only one measurement each pulse \rightarrow long measuring time required.

The Noise Influence for Emittance Determination

A real measurement of beamlets contains:

- ➤ Noise i.e. fluctuation of the output
- ➤ Bias i.e. electrical offset from amplifier

 \rightarrow Strong influence of noise reduction to numerical values of $\langle x \rangle$, $\langle x'^2 \rangle$ and $\langle xx' \rangle$ and on ε_{rms}

⇒Algorithm & cut-level must be given for evaluation

General: Typical error $\Delta \varepsilon / \varepsilon > 10 \%$

Example: Dependence of ε_{rms} on threshold value

$$\langle x'^2 \rangle = \frac{\int x'^2 \cdot \rho(x, x') \, dx \, dx'}{\int \rho(x, x') \, dx \, dx'}$$
 for continous values

$$= \frac{\sum_{i,j} x'_{ij}^{2} \cdot P(x_{ij}, x'_{ij})}{\sum_{i,j} P(x_{ij}, x'_{ij})}$$
for discrete values
$$\varepsilon_{rms} = \sqrt{\langle x^{2} \rangle \langle x'^{2} \rangle - \langle xx' \rangle^{2}}$$

Outline:

- > Definition and some properties of transverse emittance
- Slit-Grid device: scanning method
 scanning slit → beam position & grid → angular distribution
- ➤ Pepper-pot device: single shot device hole-plate → beam position & screen → angular distribution
- > Quadrupole strength variation and position measurement
- > Summary

The Pepperpot Emittance Device

ttance Measurement

➤ For pulsed LINAC: Measurement within one pulse is an advantage

Peter Forck, JUAS Archamps

 \triangleright If horizontal and vertical direction coupled \rightarrow 2-dim evaluation **required**

13

The Pepperpot Emittance Device at GSI UNILAC

viewing screen

support

Example GSI-LINAC 0.12 to 11 MeV/u:

Pepper-pot: 15×15 holes with Ø 0.1mm on a 50×50 mm² copper plate

➤ Distance: pepper-pot-screen: 25 cm

> Screen: Al₂O₃, Ø 50 mm

▶ Data acquisition: high resolution CCD

Good **spatial** resolution if many holes are illuminated. Good **angle** resolution *only* if spots do not overlap.

Result of a Pepperpot Emittance Measurement

Example: Ar ¹⁺ ion beam at 1.4 MeV/u, screen image from single shot at GSI:

Data analysis:

Projection on horizontal and vertical plane → analog to slit-grid.

The Artist View of a Pepperpot Emittance Device

Outline:

- > Definition and some properties of transverse emittance
- Slit-Grid device: scanning method
 scanning slit → beam position & grid → angular distribution
- ➤ Pepper-pot device: single shot device hole-plate → beam position & screen → angular distribution
- ➤ Quadrupole strength variation and position measurement emittance from several profile measurement and beam optical calculation
- > Summary

Particle Trajectory and Characterization of many Particles

Definition of Offset and Divergence

Horizontal and vertical coordinates at s = 0:

- $\triangleright x$: Offset from reference orbit in [mm]
- $\triangleright x'$: Angle of trajectory in unit [mrad]

$$x' = dx / ds$$

Assumption: par-axial beams:

- $\triangleright x$ is small compared to ρ_0
- \triangleright Small angle with $p_r/p_s << 1$

Longitudinal coordinate:

- \triangleright Longitudinal orbit difference: $l = -v_0 \cdot (t t_0)$ in unit [mm]
- \triangleright Momentum deviation: $\delta = (p p_0) / p_0$ sometimes in unit [mrad] = [‰]

For **continuous** beam: l has no meaning \Rightarrow set $l \equiv 0$!

Reference particle: no horizontal and vertical offset $x \equiv y \equiv 0$ and $l \equiv 0$ for all s

Definition of Coordinates

$$\vec{x}(s) =$$

$$\vec{x}(s) =$$

$$\delta$$

hori. spatial deviation horizontal divergence vert. spatial deviation vertical divergence longitudinal deviation momentum deviation

The transformation from a location s_0 to s_1 is given

by the Transfer Matrix R

$$\vec{x}(s_1) = \mathbf{R}(\mathbf{s}) \cdot \vec{x}(s_0) =$$

Remark: At ring accelerator a comparable (i.e. a bit different) matrix is called M

$$egin{pmatrix} R_{11} & R_{12} & R_{13} & R_{14} & R_{15} & R_{16} \ R_{21} & R_{22} & R_{23} & R_{24} & R_{25} & R_{26} \ R_{31} & R_{32} & R_{33} & R_{34} & R_{35} & R_{36} \ R_{41} & R_{42} & R_{43} & R_{44} & R_{45} & R_{46} \ R_{51} & R_{52} & R_{53} & R_{54} & R_{55} & R_{56} \ R_{61} & R_{62} & R_{63} & R_{64} & R_{65} & R_{66} \ \end{pmatrix} egin{bmatrix} x_0 \\ x_0 \\ x_0 \\ y_0 \\ y_0 \\ t_0 \\ \delta_0 \\ \end{pmatrix}$$

Some Properties of the Transfer Matrix

> The transformation can be done successive: with

with
$$\mathbf{R}_1 = \mathbf{R}(s_0 \rightarrow s_1)$$
,..., $\mathbf{R}_n = \mathbf{R}(s_{n-1} \rightarrow s_n)$
It is $\mathbf{R} = \mathbf{R}_n \cdot \mathbf{R}_{n-1} \cdot ... \cdot \mathbf{R}_1$

> The elements describe the coupling between the components

$$R_{11}=(x/x), R_{12}=(x/x), R_{13}=(x/y), R_{14}=(x/y), R_{15}=(x/l), R_{16}=(x/\delta)$$

$$R_{21} = (x' \mid x), R_{22} = (x' \mid x') \dots$$

➤ If all forces are symmetric along the reference orbit

than the horizontal and

vertical plane are decoupled:

$$\mathbf{R} = \begin{pmatrix} (x \mid x) & (x \mid x') & 0 & 0 & 0 & (x \mid \delta) \\ (x' \mid x) & (x' \mid x') & 0 & 0 & 0 & (x' \mid \delta) \\ 0 & 0 & (y \mid y) & (y \mid y') & 0 & 0 \\ 0 & 0 & (y' \mid y) & (y' \mid y') & 0 & 0 \\ (l \mid x) & (l \mid x') & 0 & 0 & 1 & (l \mid \delta) \\ 0 & 0 & 0 & 0 & 0 & 1 \end{pmatrix}$$

- ightharpoonup It is $det(\mathbf{R}) = 1$ (Liouville's Theorem) $\Rightarrow \mathbf{R}$ is invertible
- For un-bunched beams: delete row 5 and column 5

Conservation of Emittance

Liouville's Theorem:

The phase space density can not changes with conservative e.g. linear forces.

The beam distribution at one location s_0 is described by the beam matrix $\sigma(s_0)$

This beam matrix is transported from location s_0 to s_1 via the transfer matrix

$$\sigma(s_1) = \mathbf{R} \cdot \sigma(s_0) \cdot \mathbf{R}^T$$

6-dim beam matrix with decoupled horizontal and vertical plane:

$$\sigma = \begin{pmatrix} \sigma_{11} & \sigma_{12} & 0 & 0 & \sigma_{15} & \sigma_{16} \\ \sigma_{12} & \sigma_{22} & 0 & 0 & \sigma_{25} & \sigma_{26} \\ 0 & 0 & \sigma_{33} & \sigma_{34} & 0 & 0 \\ 0 & 0 & \sigma_{34} & \sigma_{44} & 0 & 0 \\ \sigma_{15} & \sigma_{25} & 0 & 0 & \sigma_{55} & \sigma_{56} \\ \sigma_{16} & \sigma_{26} & 0 & 0 & \sigma_{56} & \sigma_{66} \end{pmatrix}$$
The beth the the state of the state of

The beam width concerning the three coordinates are:

$$x_{rms} = \sqrt{\sigma_{11}}$$
$$y_{rms} = \sqrt{\sigma_{33}}$$
$$l_{rms} = \sqrt{\sigma_{55}}$$

Some Examples for linear Transformations

Without dispersion one can use the 2-dim sub-space (x, x').

- Drift with length L: $\mathbf{R}_{\mathbf{drift}} = \begin{pmatrix} 1 & L \\ 0 & 1 \end{pmatrix}$
- Horizontal focusing with quadrupole constant k and eff. length L:

$$\mathbf{R_{focus}} = \begin{pmatrix} \cos\sqrt{k}L & \frac{1}{\sqrt{k}}\sin\sqrt{k}L \\ -\frac{1}{\sqrt{k}}\sin\sqrt{k}L & \cos\sqrt{k}L \end{pmatrix}$$

• Horizontal de-focusing with quadrupole constant k and eff. length L:

$$\mathbf{R_{defocus}} = \begin{pmatrix} \cosh\sqrt{k}L & \frac{1}{\sqrt{k}}\sinh\sqrt{k}L \\ -\frac{1}{\sqrt{k}}\sinh\sqrt{k}L & \cosh\sqrt{k}L \end{pmatrix}$$

For a (ideal) quadrupole with field gradient $g = B_{pole}/a$, B_{pole} is the field at the pole and a the aperture, the quadrupole constant $k = |g|/(B\rho)_0$ for a magnetic rigidity $(B\rho)_0$.

Emittance Measurement by Quadrupole Variation

From a profile determination, the emittance can be calculated via linear transformation, if a well known and constant distribution (e.g. Gaussian) is assumed.

linear transformation

beam matrix:

(Twiss parameters)

 $\sigma_{11}(0), \, \sigma_{12}(0), \, \, \sigma_{22}(0)$

to be determined

The beam width x_{max} and

$$x^2_{max} = \sigma_{11}(1, k)$$
 is measured,

matrix $\mathbf{R}(\mathbf{k})$ describes the focusing.

measurement:

$$\mathbf{x}^2(\mathbf{k}) = \sigma_{11}(1,\mathbf{k})$$

Measurement of transverse Emittance

- The beam width x_{max} at s_1 is measured, and therefore $\sigma_{11}(1, k_i) = x_{max}^2(k_i)$.
- Different focusing of the quadrupole $k_1, k_2...k_n$ is used: $\Rightarrow \mathbf{R_{focus}}(k_i)$, including the drift, the transfer matrix is changed $\mathbf{R}(k_i) = \mathbf{R_{drift}} \cdot \mathbf{R_{focus}}(k_i)$.
- Task: Calculation of beam matrix $\sigma(0)$ at entrance s_0 (size and orientation of ellipse)
- The transformations of the beam matrix are: $\sigma(1, k) = \mathbf{R}(k) \cdot \sigma(0) \cdot \mathbf{R}^{\mathbf{T}}(k)$. \Longrightarrow Resulting in a redundant system of linear equations for $\sigma_{ij}(0)$:

$$\sigma_{11}(1,k_1) = R_{11}^2(k_1) \cdot \sigma_{11}(0) + 2R_{11}(k_1)R_{12}(k_1) \cdot \sigma_{12}(0) + R_{12}^2(k_1) \cdot \sigma_{22}(0) \text{ focusing } k_1$$
:

$$\sigma_{11}(1, k_n) = R_{11}^2(k_n) \cdot \sigma_{11}(0) + 2R_{11}(k_n)R_{12}(k_n) \cdot \sigma_{12}(0) + R_{12}^2(k_n) \cdot \sigma_{22}(0)$$
 focusing k_n

- To learn something on possible errors, n > 3 settings have to be performed. A setting with a focus close to the SEM-grid should be included to do a good fit.
- Assumptions:
 - Only elliptical shaped emittance can be obtained.
 - No broadening of the emittance e.g. due to space-charge forces.
 - If not valid: A self-consistent algorithm has to be used.

Measurement of transverse Emittance

Using the 'thin lens approximation' i.e. the quadrupole has a focal length of f:

$$\mathbf{R}_{focus}(K) = \begin{pmatrix} 1 & 0 \\ -1/f & 1 \end{pmatrix} \equiv \begin{pmatrix} 1 & 0 \\ K & 1 \end{pmatrix} \implies \mathbf{R}(L, K) = \mathbf{R}_{drift}(L) \cdot \mathbf{R}_{focus}(K) = \begin{pmatrix} 1 + LK & L \\ K & 1 \end{pmatrix}$$

ELETTRA 100 MeV e Linac, YAG:Ce:

Example: Square of the beam width at Measurement of $\sigma(1,K) = \mathbf{R}(K) \cdot \sigma(0) \cdot \mathbf{R}^{\mathrm{T}}(K)$ $\sigma_{11}(1,K) = L^2 \sigma_{11}(0) \cdot K^2$

$$+2 \cdot (L\sigma_{11}(0) + L^{2}\sigma_{12}(0)) \cdot K$$

$$+L^{2}\sigma_{22}(0) + \sigma_{11}(0)$$

$$\equiv a \cdot K^{2} - 2ab \cdot K + ab^{2} + c$$

The σ -matrix at quadrupole is:

$$\sigma_{11}(0) = \frac{a}{L^2}$$

$$\sigma_{12}(0) = -\frac{a}{L^2} \left(\frac{1}{L} + b\right)$$

$$\sigma_{22}(0) = \frac{1}{L^2} \left(ab^2 + c + \frac{2ab}{L} + \frac{a}{L^2}\right)$$

$$\epsilon = \sqrt{\det \sigma(0)} = \sqrt{\sigma_{11}(0)\sigma_{22}(0) - \sigma_{12}^2(0)} = \sqrt{ac/L^2}$$

26

The 'Three Grid Method' for Emittance Measurement

Instead of quadrupole variation, the beam width is measured at *different* locations:

The procedure is:

- \triangleright Beam width x(i) measured at the locations s_i ⇒ beam matrix element
 - $x^2(i) = \sigma_{11}(i).$
- \triangleright The transfer matrix $\mathbf{R}(i)$ is known. (without dipole a 3×3 matrix.)
- > The transformations are:

$$\sigma(i) = \mathbf{R}(i)\sigma(0)\mathbf{R}^{\mathrm{T}}(i)$$

 \Rightarrow redundant equations:

$$\sigma_{11}(1) = R_{11}^2(1) \cdot \sigma_{11}(0) + 2R_{11}(1)R_{12}(1) \cdot \sigma_{12}(0) + R_{12}^2(1) \cdot \sigma_{22}(0) \qquad \mathbf{R}(1) : s_0 \to s_1
\sigma_{11}(2) = R_{11}^2(2) \cdot \sigma_{11}(0) + 2R_{11}(2)R_{12}(2) \cdot \sigma_{12}(0) + R_{12}^2(2) \cdot \sigma_{22}(0) \qquad \mathbf{R}(2) : s_0 \to s_2$$

$$\mathbf{R}(1): s_0 \to s_1$$

$$\mathbf{R}(2): s_0 \to s_2$$

$$\sigma_{11}(n) = R_{11}^2(n) \cdot \sigma_{11}(0) + 2R_{11}(n)R_{12}(n) \cdot \sigma_{12}(0) + R_{12}^2(n) \cdot \sigma_{22}(0) \quad \mathbf{R}(n) : s_0 \to s_n$$

Peter Forck, JUAS Archamps

Transverse Emittance Measurement

Results of a 'Three Grid Method' Measurement

Solution: Solving the linear equations like for quadrupole variation or fitting the profiles with linear optics code (e.g. TRANSPORT, WinAgile, MadX).

Example: The hor. and vert. beam envelope and the beam width at a transfer line:

Assumptions: > constant emittance, in particular no space-charge broadening

≥100 % transmission i.e. no loss due to vacuum pipe scraping

> no misalignment, i.e. beam center equals center of the quadrupoles.

Summary for transverse Emittance Measurement

Emittance measurements are very important for comparison to theory.

It includes size (value of ε) and orientation in phase space (σ_{ij} or α , β and γ)

(three independent values)

Techniques for transfer lines (synchrotron: width measurement sufficient):

Low energy beams \rightarrow direct measurement of x- and x'-distribution

- ightharpoonup Slit-grid: movable slit $\rightarrow x$ -profile, grid $\rightarrow x'$ -profile
- ightharpoonup Pepper-pot: holes $\rightarrow x$ -profile, scintillation screen $\rightarrow x'$ -profile

All beams → *profile measurement* + *linear transformation*:

- ➤ Quadrupole variation: one location, different setting of a quadrupole
- > 'Three grid method': different locations
- ➤ Assumptions: ➤ well aligned beam, no steering
 - ➤ no emittance blow-up due to space charge.