Pick-Ups for bunched Beams

Outline:

- \triangleright Signal generation \rightarrow transfer impedance
- ➤ Capacitive *button* BPM for high frequencies
- ➤ Capacitive *shoe-box* BPM for low frequencies
- > Electronics for position evaluation
- > BPMs for measurement of closed orbit, tune and further lattice functions
- > Summary

Usage of BPMs

A Beam Position Monitor is an non-destructive device for bunched beams

It has a low cut-off frequency i.e. dc-beam behavior can not be monitored The abbreviation BPM and pick-up PU are synonyms

1. It delivers information about the transverse center of the beam

- > *Trajectory:* Position of an individual bunch within a transfer line or synchrotron
- > Closed orbit: central orbit averaged over a period much longer than a betatron oscillation
- \triangleright Single bunch position \rightarrow determination of parameters like tune, chromaticity, β -function
- \triangleright Bunch position on a large time scale: bunch-by-bunch \rightarrow turn-by-turn \rightarrow averaged position
- > Time evolution of a single bunch can be compared to 'macro-particle tracking' calculations
- Feedback: fast bunch-by-bunch damping *or* precise (and slow) closed orbit correction

2. Information on longitudinal bunch behavior

- **Bunch shape and evolution** during storage and acceleration
- For proton LINACs: the beam **velocity** can be determined by two BPMs
- For electron LINACs: **Phase** measurement by Bunch Arrival Monitor
- **Relative** low current measurement down to 10 nA.

Excurse: Time Domain \(\lor \) Frequency Domain

Time domain: Recording of a voltage as a function of time:

Instrument:

Fourier Transformation:

$$\widetilde{f}(\omega) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} f(t)e^{-i\omega t}dt$$

Frequency domain: Displaying of a voltage as a function of frequency:

Instrument:

Spectrum Analyzer

Fourier Transformation of time domain data

Care: Contains amplitude

and phase

Excurse: Properties of Fourier Transformation

Fourier Transform.:
$$\widetilde{f}(\omega) \equiv \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} f(t)e^{-i\omega t} dt$$
 Inv. F. T.: $f(t) \equiv \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} \widetilde{f}(\omega)e^{i\omega t} d\omega$ tech. $DFT(f)$ or $FFT(f)$

- \Rightarrow a process can be described either with f(t) 'time domain' or $\widetilde{f}(\omega)$ 'frequency domain'
- \rightarrow tech.: DFT is digital FT, FFT is a dedicated algorithm for **fast** calculation with 2^n increments

No loss of information: If
$$\tilde{f}(\omega) = \frac{1}{\sqrt{2\pi}} \int f(t)e^{-i\omega t} dt$$
 exists, than $f(t) = \frac{1}{2\pi} \int \int f(\tau)e^{i\omega(t-\tau)} d\omega d\tau$

FT is complex: $\widetilde{f}(\omega) \in C \to \text{tech. amplitude } A(\omega) = |\widetilde{f}(\omega)| \text{ and phase } \varphi$ $Im(z) \bigwedge^{A} Z$

For $f(t) \in R \Rightarrow A(\omega)$ is even and $\varphi(\omega)$ is odd function of ω

Similarity Law: For
$$a \neq 0$$
 it is for $f(at)$: $|1/a| \cdot \tilde{f}(\omega/a) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} f(at)e^{-i\omega t} dt$

The properties can be scaled to any frequency range: 'shorter time signal have wider.

→ the properties can be scaled to any frequency range; 'shorter time signal have wider FT'

Differentiation Law:
$$(i\omega)^n \cdot \widetilde{f}(\omega) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} f^{(n)}(t)e^{-i\omega t}dt$$

ightarrow differentiation in time domain corresponds to multiplication with $i\omega$ in frequency domain

Convolution Law: For
$$f(t) = f_1(t) * f_2(t) \equiv \int f_1(\tau) \cdot f_2(t-\tau) d\tau$$

$$\Rightarrow \widetilde{f}(\omega) = \widetilde{f}_1(\omega) \cdot \widetilde{f}_2(\omega) \rightarrow \text{convolution}$$
 be expressed as multiplication of FT

Excurse: Properties of Fourier Trans. -> technical Realization

Convolution Law: For
$$f(t) = f_1(t) * f_2(t) \equiv \int_{\infty}^{\infty} f_1(\tau) \cdot f_2(t - \tau) d\tau$$

$$\Rightarrow \widetilde{f}(\omega) = \widetilde{f}_1(\omega) \cdot \widetilde{f}_2(\omega)$$

→ convolution in time domain can be expressed as multiplication of FT in frequency domain **Application:** Chain of electrical elements calculated in frequency domain more easy parameters are more easy in frequency domain (bandwidth, f-dependent amplification.....)

Engineering formulation for finite number of discrete samples:

Digital Fourier Trans.: DFT(f), special numerical algorithm for 2^n samples as Fast FT FFT(f)

Transfer function $H(\omega)$ and h(t) and describe effects of electrical elements

Calculation with $H(\omega)$ in frequency domain or

h(t) time domain \rightarrow 'Finite Impulse Response' FIR filter or 'Infinite Impulse Response' IIR filter

5

Pick-Ups for bunched Beams

The image current at the beam pipe is monitored on a high frequency basis i.e. the ac-part given by the bunched beam.

Beam Position Monitor **BPM** equals Pick-Up **PU**

Most frequent used instrument!

For relativistic velocities, the electric field is transversal:

$$E_{\perp,lab}(t) = \gamma \cdot E_{\perp,rest}(t')$$

➤ Signal treatment for capacitive pick-ups:

- ➤ Longitudinal bunch shape
- ➤ Overview of processing electronics for Beam Position Monitor (BPM)

> Measurements:

- > Closed orbit determination
- > Tune and lattice function measurements (synchrotron only).

Principle of Signal Generation of capacitive BPMs

The image current at the wall is monitored on a high frequency basis

i.e. ac-part given by the bunched beam.

Animation by Rhodri Jones (CERN)

Model for Signal Treatment of capacitive BPMs

The wall current is monitored by a plate or ring inserted in the beam pipe:

The image current I_{im} at the plate is given by the beam current and geometry:

$$I_{im}(t) = -\frac{dQ_{im}(t)}{dt} = \frac{-A}{2\pi al} \cdot \frac{dQ_{beam}(t)}{dt} = \frac{-A}{2\pi a} \cdot \frac{1}{\beta c} \cdot \frac{dI_{beam}(t)}{dt} = \frac{A}{2\pi a} \cdot \frac{1}{\beta c} \cdot i\omega I_{beam}(\omega)$$
Using a relation for Fourier transformation: $I_{beam} = I_0 e^{-i\omega t} \Rightarrow dI_{beam}/dt = -i\omega I_{beam}$.

Transfer Impedance for a capacitive BPM

At a resistor R the voltage U_{im} from the image current is measured.

The transfer impedance Z_t is the ratio between voltage U_{im} and beam current I_{beam}

in frequency domain:
$$U_{im}(\omega) = R \cdot I_{im}(\omega) = Z_t(\omega, \beta) \cdot I_{beam}(\omega)$$
.

Capacitive BPM:

- \triangleright The pick-up capacitance C: plate \leftrightarrow vacuum-pipe and cable.
- \triangleright The amplifier with input resistor R.
- The beam is a high-impedance current source:

$$\begin{split} U_{im} &= \frac{R}{1 + i\omega RC} \cdot I_{im} \\ &= \frac{A}{2\pi a} \cdot \frac{1}{\beta c} \cdot \frac{1}{C} \cdot \frac{i\omega RC}{1 + i\omega RC} \cdot I_{beam} \\ &\equiv Z_{t}(\omega, \beta) \cdot I_{beam} \end{split} \qquad \frac{1}{Z} = \frac{1}{R} + i\omega C \Leftrightarrow Z = \frac{R}{1 + i\omega RC} \end{split}$$

equivalent circuit

$$\frac{1}{Z} = \frac{1}{R} + i\omega C \Leftrightarrow Z = \frac{R}{1 + i\omega RC}$$

This is a high-pass characteristic with $\omega_{cut} = 1/RC$:

Amplitude:
$$|Z_t(\omega)| = \frac{A}{2\pi a} \cdot \frac{1}{\beta c} \cdot \frac{1}{C} \cdot \frac{\omega/\omega_{cut}}{\sqrt{1 + \omega^2/\omega_{cut}^2}}$$
 Phase: $\varphi(\omega) = \arctan(\omega_{cut}/\omega)$

ground

Example of Transfer Impedance for Proton Synchrotron

The high-pass characteristic for typical synchrotron BPM:

$$U_{im}(\omega) = Z_t(\omega) \cdot I_{beam}(\omega)$$

$$|Z_{t}| = \frac{A}{2\pi a} \cdot \frac{1}{\beta c} \cdot \frac{1}{C} \cdot \frac{\omega/\omega_{cut}}{\sqrt{1 + \omega^{2}/\omega_{cut}^{2}}}$$

$$\varphi = \arctan(\omega_{cut}/\omega)$$

Parameter for shoe-box BPM:

$$C=100 \text{pF}, l=10 \text{cm}, \beta=50\%$$

$$f_{cut} = \omega/2\pi = (2\pi RC)^{-1}$$

for
$$R=50 \Omega \Rightarrow f_{cut}=32 \text{ MHz}$$

for
$$R=1 \text{ M}\Omega \Rightarrow f_{cut} = 1.6 \text{ kHz}$$

Large signal strength → high impedance

Smooth signal transmission $\rightarrow 50 \Omega$

Signal Shape for capacitive BPMs: differentiated \leftrightarrow proportional

Depending on the frequency range *and* termination the signal looks different:

$$\begin{array}{c} \text{High frequency range } \omega >> \omega_{cut}: \\ Z_{t} \propto \frac{i\omega/\omega_{cut}}{1+i\omega/\omega_{cut}} \rightarrow 1 \Rightarrow U_{im}(t) = \frac{1}{C} \cdot \frac{1}{\beta c} \cdot \frac{A}{2\pi a} \cdot I_{beam}(t) \end{array}$$

 \Rightarrow direct image of the bunch. Signal strength $Z_t \propto A/C$ i.e. nearly independent on length

$$\triangleright$$
 Low frequency range $\omega \ll \omega_{cut}$:

$$Z_{t} \propto \frac{i\omega/\omega_{cut}}{1+i\omega/\omega_{cut}} \rightarrow i\frac{\omega}{\omega_{cut}} \implies U_{im}(t) = R \cdot \frac{A}{\beta c \cdot 2\pi a} \cdot i\omega I_{beam}(t) = R \cdot \frac{A}{\beta c \cdot 2\pi a} \cdot \frac{dI_{beam}}{dt}$$

- \Rightarrow derivative of bunch, single strength $Z_t \propto A$, i.e. (nearly) independent on C
- > Intermediate frequency range $\omega \approx \omega_{cut}$: Calculation using Fourier transformation

Example from synchrotron BPM with 50 Ω termination (reality at p-synchrotron : $\sigma >> 1$ ns):

11

Calculation of Signal Shape (here single bunch)

The transfer impedance is used in frequency domain! The following is performed:

1. Start: Time domain Gaussian function $I_{beam}(t)$ having a width of σ_t

2. FFT of $I_{beam}(t)$ leads to the frequency domain Gaussian $I_{beam}(f)$ with $\sigma_f = (2\pi\sigma_t)^{-1}$

- 3. Multiplication with $Z_t(f)$ with $f_{cut}=32$ MHz leads to $U_{im}(f)=Z_t(f)\cdot I_{beam}(f)$
- **4. Inverse FFT** leads to $U_{im}(t)$

Synchrotron filled with 8 bunches accelerated with f_{acc} =1 MHz

BPM terminated with $R=50 \Omega \implies f_{acc} << f_{cut}$:

Parameter: $R=50 \Omega \Rightarrow f_{cut}=32 \text{ MHz}$, all buckets filled

C=100pF, l=10cm, β =50%, σ_t =100 ns

➤ Fourier spectrum is concentrated at acceleration harmonics with single bunch spectrum as an envelope.

 \triangleright Bandwidth up to typically $10*f_{acc}$

Calculation of Signal Shape: Bunch Train with empty Buckets

Synchrotron during filling: Empty buckets, $R=50 \Omega$:

Parameter: $R=50 \Omega \Rightarrow f_{cut}=32 \text{ MHz}$, 2 empty buckets

C=100pF, l=10cm, $\beta=50\%$, $\sigma=100$ ns

➤ Fourier spectrum is more complex, harmonics are broader due to sidebands

Calculation of Signal Shape: Filtering of Harmonics

Effect of filters, here bandpass:

Parameter: $R=50 \Omega$, 4th order Butterworth filter at $f_{cut}=2$ MHz

 $C=100 \text{pF}, l=10 \text{cm}, \beta=50\%, \sigma=100 \text{ ns}$

- ➤ Ringing due to sharp cutoff
- ➤ Other filter types more appropriate

nth order Butterworth filter, math. simple, but **not** well suited:

$$|H_{low}| = \frac{1}{\sqrt{1 + (\omega/\omega_{cut})^{2n}}} \quad \text{and} \quad |H_{high}| = \frac{(\omega/\omega_{cut})^n}{\sqrt{1 + (\omega/\omega_{cut})^{2n}}}$$

$$H_{\mathit{filter}} = H_{\mathit{high}} \cdot H_{\mathit{low}}$$

Generally: $Z_{tot}(\omega) = H_{cable}(\omega) \cdot H_{filter}(\omega) \cdot H_{amp}(\omega) \cdot \dots \cdot Z_{t}(\omega)$

Remark: For electronics calculation, time domain filters (FIR and IIR) are more appropriate

Examples for differentiated & proportional Shape

Proton LINAC, e⁻-LINAC&synchtrotron:

100 MHz $< f_{rf} <$ 1 GHz typically R=50 Ω processing to reach bandwidth $C \approx 5$ pF $\Rightarrow f_{cut} = 1/(2\pi RC) \approx 700$ MHz Example: 36 MHz GSI ion LINAC

Proton synchtrotron:

1 MHz $< f_{rf} <$ 30 MHz typically $\it R$ =1 M Ω for large signal i.e. large $\rm Z_t$

 $C \approx 100 \text{ pF} \Rightarrow f_{cut} = 1/(2\pi RC) \approx 10 \text{ kHz}$

Example: non-relativistic GSI synchrotron

 $f_{rf}: 0.8 \text{ MHz} \rightarrow 5 \text{ MHz}$

Remark: During acceleration the bunching-factor is increased: 'adiabatic damping'.

Principle of Position Determination by a BPM

The difference voltage between plates gives the beam's center-of-mass →most frequent application

'Proximity' effect leads to different voltages at the plates:

$$y = \frac{1}{S_{y}(\omega)} \cdot \frac{U_{up} - U_{down}}{U_{up} + U_{down}} + \delta_{y}(\omega)$$

$$\equiv \frac{1}{S_{y}} \cdot \frac{\Delta U_{y}}{\Sigma U_{y}} + \delta_{y}$$

$$x = \frac{1}{S_{x}(\omega)} \cdot \frac{U_{right} - U_{left}}{U_{right} + U_{left}} + \delta_{x}(\omega)$$

$$U_{up}$$

$$y \text{ from } \Delta U = U_{up} - U_{down}$$

$$Z$$

$$It \text{ is at least:}$$

$$\Delta U << \Sigma U/10$$

 $S(\omega,x)$ is called **position sensitivity**, sometimes the inverse is used $k(\omega,x)=1/S(\omega,x)$ S is a geometry dependent, non-linear function, which have to be optimized Units: S=[%/mm] and sometimes S=[dB/mm] or k=[mm].

The Artist View of a BPM

Outline:

- **>** Signal generation → transfer impedance
- ➤ Capacitive <u>button</u> BPM for high frequencies used at most proton LINACs and electron accelerators
- **➤** Capacitive *shoe-box* BPM for low frequencies
- **Electronics for position evaluation**
- > BPMs for measurement of closed orbit, tune and further lattice functions
- > Summary

2-dim Model for a Button BPM

 \mathbf{a}

button

beam

'Proximity effect': larger signal for closer plate

Ideal 2-dim model: Cylindrical pipe → image current density via 'image charge method' for 'pensile' beam:

$$j_{im}(\phi) = \frac{I_{beam}}{2\pi a} \cdot \left(\frac{a^2 - r^2}{a^2 + r^2 - 2ar \cdot \cos(\phi - \theta)} \right)$$

Image current: Integration of finite BPM size: $I_{im} = a \cdot \int_{-\alpha/2}^{\alpha/2} j_{im}(\phi) d\phi$

2-dim Model for a Button BPM

a

button

Ideal 2-dim model: Non-linear behavior and hor-vert coupling:

Sensitivity: $x=1/S \cdot \Delta U/\Sigma U$ with S [%/mm] or [dB/mm]

For this example: center part $S=7.4\%/\text{mm} \Leftrightarrow k=1/S=14\text{mm}$

The measurement of U delivers: $x = \frac{1}{S_x} \cdot \frac{\Delta U}{\Sigma U} \rightarrow \text{here } S_x = S_x(x, y) \text{ i.e. non-linear.}$

Button BPM Realization

LINACs, e⁻-synchrotrons: 100 MHz $< f_{rf} < 3$ GHz \rightarrow bunch length \approx BPM length

 \rightarrow 50 Ω signal path to prevent reflections

Button BPM with 50 $\Omega \Rightarrow U_{im}(i)$

Example: LHC-type inside cryc \varnothing 24 mm, half aperture a=25 m $\Rightarrow f_{cut}$ =400 MHz, Z_t = 1.3 Ω above

Button BPM at Synchrotron Light Sources

Due to synchrotron radiation, the button insulation might be destroyed ⇒buttons only in vertical plane possible ⇒ increased non-linearity

HERA-e realization

horizontal: $x = \frac{1}{S_x} \cdot \frac{(U_2 + U_4) - (U_1 + U_3)}{U_1 + U_2 + U_3 + U_4}$

vertical:
$$y = \frac{1}{S_y} \cdot \frac{(U_1 + U_2) - (U_3 + U_4)}{U_1 + U_2 + U_3 + U_4}$$

Button BPM at Synchrotron Light Sources

Due to synchrotron radiation, the button insulation might be destroyed

⇒buttons only in vertical plane possible ⇒ increased non-linearity

Optimization: horizontal distance and size of buttons

PEP-realization

From S. Varnasseri, SESAME, DIPAC 2005

- ➤ Beam position swept with 2 mm steps
- ➤ Non-linear sensitivity and hor.-vert. coupling
- \rightarrow At center $S_r = 8.5\%$ /mm in this example

horizontal:
$$x = \frac{1}{S_x} \cdot \frac{(U_2 + U_4) - (U_1 + U_3)}{U_1 + U_2 + U_3 + U_4}$$

vertical:
$$y = \frac{1}{S_y} \cdot \frac{(U_1 + U_2) - (U_3 + U_4)}{U_1 + U_2 + U_3 + U_4}$$

Outline:

- \triangleright Signal generation \rightarrow transfer impedance
- ➤ Capacitive *button* BPM for high frequencies used at most proton LINACs and electron accelerators
- ➤ Capacitive <u>shoe-box</u> BPM for low frequencies used at most proton synchrotrons due to linear position reading
- **Electronics for position evaluation**
- > BPMs for measurement of closed orbit, tune and further lattice functions
- > Summary

Shoe-box BPM for Proton Synchrotrons

Frequency range: 1 MHz $< f_{rf} <$ 10 MHz \Rightarrow bunch-length >> BPM length.

Signal is proportional to actual plate length:

$$\Rightarrow x = a \cdot \frac{l_{\text{right}} - l_{\text{left}}}{l_{\text{right}} + l_{\text{left}}} \qquad \qquad U_{\text{left}}$$

Size: 200x70 mm²

In ideal case: linear reading

$$x = a \cdot \frac{U_{right} - U_{left}}{U_{right} + U_{left}} \equiv a \cdot \frac{\Delta U}{\Sigma U}$$

$$0.4 \quad 0.3 \quad 0.2 \quad 0.4 \quad 0.3 \quad 0.2 \quad 0.3 \quad 0.4 \quad 0.4 \quad 0.$$

beam position [mm]

Shoe-box BPM:

Advantage: Very linear, low frequency dependence

i.e. position sensitivity **S** is constant

Disadvantage: Large size, complex mechanics

high capacitance

Technical Realization of a Shoe-Box BPM

Technical realization at HIT synchrotron of 46 m length for 7 MeV/u \rightarrow 440 MeV/u BPM clearance: 180x70 mm², standard beam pipe diameter: 200 mm.

Technical Realization of a Shoe-Box BPM

Technical realization at HIT synchrotron of 46 m length for 7 MeV/u \rightarrow 440 MeV/u BPM clearance: 180x70 mm², standard beam pipe diameter: 200 mm.

Comparison Shoe-Box and Button BPM

	Shoe-Box BPM	Button BPM
Precaution	Bunches longer than BPM	Bunch length comparable to BPM
BPM length (typical)	10 to 20 cm length per plane	Ø1 to 5 cm per button
Shape	Rectangular or cut cylinder	Orthogonal or planar orientation
Bandwidth (typical)	0.1 to 100 MHz	100 MHz to 5 GHz
Coupling	1 MΩ or ≈1 kΩ (transformer)	50 Ω
Cutoff frequency (typical)	0.01 10 MHz (<i>C</i> =30100pF)	0.3 1 GHz (<i>C</i> =210pF)
Linearity	Very good, no x-y coupling	Non-linear, x-y coupling
Sensitivity	Good, care: plate cross talk	Good, care: signal matching
Usage	At proton synchrotrons, f_{rf} < 10 MHz	All electron acc., proton Linacs, $f_{rf} > 100 \text{ MHz}$

Outline:

- \triangleright Signal generation \rightarrow transfer impedance
- ➤ Capacitive *button* BPM for high frequencies used at most proton LINACs and electron accelerators
- ➤ Capacitive *shoe-box* BPM for low frequencies used at most proton synchrotrons due to linear position reading
- ➤ Electronics for position evaluation analog signal conditioning to achieve small signal processing
- > BPMs for measurement of closed orbit, tune and further lattice functions
- > Summary

General: Noise Consideration

- 1. Signal voltage given by: $U_{im}(f) = Z_t(f) \cdot I_{beam}(f)$
- 2. Position information from voltage difference: $x = 1/S \cdot \Delta U/\Sigma U$
- 3. Thermal noise voltage given by: $U_{eff}(R, \Delta f) = \sqrt{4k_B \cdot T \cdot R \cdot \Delta f}$
- \Rightarrow Signal-to-noise $\Delta U_{im}/U_{eff}$ is influenced by:
- ➤ Input signal amplitude
 - \rightarrow large or matched Z_t
- Thermal noise at $R=50\Omega$ for T=300K (for shoe box R=1k Ω ...1M Ω)
- ➤ Bandwidth Δf ⇒ Restriction of frequency width because the power is concentrated on the harmonics of f_{rf}

Remark: Additional contribution by non-perfect electronics typically a factor 2

Moreover, pick-up by electro-magnetic interference can contribute ⇒ good shielding required

Comparison: Filtered Signal ↔ Single Turn

Example: GSI Synchr.: U^{73+} , $E_{inj}=11.5$ MeV/u \rightarrow 250 MeV/u within 0.5 s, 10^9 ions

However: not only noise contributes but additionally **beam movement** by betatron oscillation ⇒ broadband processing i.e. turn-by-turn readout for tune determination.

Broadband Signal Processing

- \succ Hybrid or transformer close to beam pipe for analog $\varDelta U \& \Sigma U$ generation or $U_{left} \& U_{right}$
- ➤ Attenuator/amplifier
- Filter to get the wanted harmonics and to suppress stray signals
- \triangleright ADC: digitalization \longrightarrow followed by calculation of of $\Delta U/\Sigma U$

Advantage: Bunch-by-bunch possible, versatile post-processing possible

Disadvantage: Resolution down to $\approx 100~\mu m$ for shoe box type , i.e. $\approx 0.1\%$ of aperture, resolution is worse than narrowband processing

Narrowband Processing for improved Signal-to-Noise

Narrowband processing equals heterodyne receiver (e.g. AM-radio or spectrum analyzer)

- ➤ Attenuator/amplifier
- \succ Mixing with accelerating frequency f_{rf} \Rightarrow signal with sum and difference frequency
- ➤ Bandpass filter of the mixed signal (e.g at 10.7 MHz)
- ➤ Rectifier: synchronous detector
- \triangleright ADC: digitalization \longrightarrow followed calculation of $\Delta U/\Sigma U$

Advantage: spatial resolution about 100 time better than broadband processing

Disadvantage: No turn-by-turn diagnosis, due to mixing = 'long averaging time'

For non-relativistic p-synchrotron: \rightarrow variable f_{rf} leads via mixing to constant intermediate freq.

Mixer and Synchronous Detector

Mixer: A passive rf device with

- \triangleright Input RF (radio frequency): Signal of investigation $A_{RF}(t) = A_{RF} \cos \omega_{RF} t$
- \triangleright Input LO (local oscillator): Fixed frequency $A_{LO}(t) = A_{LO} \cos \omega_{LO} t$
- Output IF (intermediate frequency)

$$\begin{aligned} A_{IF}(t) &= A_{RF} \cdot A_{LO} \cos \omega_{RF} t \cdot \cos \omega_{LO} t \\ &= A_{RF} \cdot A_{LO} \left[\cos(\omega_{RF} - \omega_{LO}) t + \cos(\omega_{RF} + \omega_{LO}) t \right] \end{aligned}$$

⇒ Multiplication of both input signals, containing the sum and difference frequency.

Synchronous detector: A phase sensitive rectifier

Analog versus Digital Signal Processing

Modern instrumentation uses **digital** techniques with extended functionality.

Digital receiver as modern successor of super heterodyne receiver

- ➤ Basic functionality is preserved but implementation is very different
- ➤ Digital transition just after the amplifier & filter or mixing unit
- ➤ Signal conditioning (filter, decimation, averaging) on FPGA

Advantage of DSP: Versatile operation, flexible adoption without hardware modification Disadvantage of DSP: non, good engineering skill requires for development, expensive

Comparison of BPM Readout Electronics (simplified)

Type	Usage	Precaution	Advantage	Disadvantage
Broadband	p-sychr.	Long bunches	Bunch structure signal Post-processing possible Required for fast feedback	Resolution limited by noise
Narrowband	all synchr.	Stable beams >100 rf-periods	High resolution	No turn-by-turn Complex electronics
Digital Signal Processing	all	Several bunches ADC 125 MS/s	Very flexible High resolution Trendsetting technology for future demands	Limited time resolution by ADC → undersampling complex and expensive

Outline:

- \triangleright Signal generation \rightarrow transfer impedance
- ➤ Capacitive *button* BPM for high frequencies used at most proton LINACs and electron accelerators
- > Capacitive *shoe-box* BPM for low frequencies used at most proton synchrotrons due to linear position reading
- ➤ Electronics for position evaluation analog signal conditioning to achieve small signal processing
- > BPMs for measurement of closed orbit, tune and further lattice functions frequent application of BPMs
- > Summary

Close Orbit Measurement with BPMs

Detected position on a analog narrowband basis \rightarrow closed orbit with ms time steps. It differs from ideal orbit by misalignments of the beam or components.

Example from GSI-Synchrotron:

Closed orbit:

Beam position averaged over many betatron oscillations.

Tune Measurement: General Considerations

Coherent excitations are required for the detection by a BPM

Beam particle's in-coherent motion

⇒ center-of-mass stays constant

Excitation of all particles by rf

 \Rightarrow Coherent motion

⇒ center-of-mass variation turn-by-turn

Graphics by R. Singh, GSI

Tune Measurement: General Considerations

The tune Q is the number of betatron oscillations per turn.

The betatron frequency is $f_{\beta} = Qf_{0}$.

Measurement: excitation of *coherent* betatron oscillations + position from one BPM.

From a measurement one gets only the non-integer part q of Q with $Q=n\pm q$. Moreover, only 0 < q < 0.5 is the unique result.

Example: Tune measurement for six turns with the three lowest frequency fits:

To distinguish for q < 0.5 or q > 0.5:

Changing the tune slightly, the direction of q shift differs.

Tune Measurement: The Kick-Method in Time Domain

The beam is excited to coherent betatron oscillation

- → the beam position measured each revolution ('turn-by-turn')
- \rightarrow Fourier Trans. gives the non-integer tune q. Short kick compared to revolution.

The de-coherence time limits the **resolution**:

N non-zero samples

 \Rightarrow General limit of discrete FFT: $\Delta q > \frac{1}{2}$

 $N = 200 \text{ turn} \Rightarrow \Delta q > 0.003 \text{ as resolution}$ (tune spreads are typically $\Delta q \approx 0.001!$)

Tune Measurement: De-Coherence Time

The particles are excited to betatron oscillations, but due to the spread in the betatron frequency, they getting out of phase ('Landau damping'):

Scheme of the individual trajectories of four particles after a kick (top) and the resulting *coherent* signal as measured by a pick-up (bottom).

⇒ Kick excitation leads to limited resolution

Remark: The tune spread is much lower for a real machine.

Tune Measurement: Beam Transfer Function in Frequency Domain

Instead of one kick, the beam can be excited by a sweep of a sine wave, called 'chirp'

→ Beam Transfer Function (BTF) Measurement as the velocity response to a kick

Prinziple:

Beam acts like a driven oscillator!

Using a network analyzer:

- ➤ RF OUT is feed to the beam by a kicker (reversed powered as a BPM)
- ➤ The position is measured at one BPM
- ➤ Network analyzer: amplitude and phase of the response
- ➤ Sweep time up to seconds due to de-coherence time per band
- \triangleright resolution in tune: up to 10^{-4}

Tune Measurement: Result for BTF Measurement

BTF measurement at the GSI synchrotron, recorded at the 25th harmonics.

A wide scan with both sidebands at

 $h=25^{th}$ -harmonics:

A detailed scan for the **lower** sideband → beam acts like a driven oscillator:

From the position of the sidebands q = 0.306 is determined. From the width $\Delta f/f \approx 5 \cdot 10^{-4}$ the tune spread can be calculated via $\Delta f_h^- = \eta \frac{\Delta p}{p} \cdot h f_0 \left(h - q + \frac{\xi}{\eta} Q \right)$

Advantage: High resolution for tune and tune spread (also for de-bunched beams)

Disadvantage: Long sweep time (up to several seconds).

Tune Measurement: Gentle Excitation with Wideband Noise

Instead of a sine wave, noise with adequate bandwidth can be applied

- → beam picks out its resonance frequency: Example: Vertical tune within 2048 turn
- ► broadband excitation with white noise of $\approx 10 \text{ kHz}$ bandwidth
- turn-by-turn position measurement by fast ADC
- ➤ Fourier transformation of the recorded data
- ⇒ Continues monitoring with low disturbance

Advantage:

Fast scan with good time resolution **Disadvantage:** Lower precision

Excitation of coherent betatron oscillations: From the position deviation x_{ik} at the BPM i and turn k the β -function $\beta(s_i)$ can be evaluated.

The position reading is: $(\hat{x}_i \text{ amplitude}, \mu_i \text{ phase at } i, Q \text{ tune}, s_0 \text{ reference location})$

$$x_{ik} = \hat{x}_i \cdot \cos(2\pi Qk + \mu_i) = \hat{x}_0 \cdot \sqrt{\beta(s_i)/\beta(s_0)} \cdot \cos(2\pi Qk + \mu_i)$$

 \rightarrow a turn-by-turn position reading at many location (4 per unit of tune) is required.

The ratio of β -functions at different location:

$$\frac{\beta(s_i)}{\beta(s_0)} = \left(\frac{\hat{x}_i}{\hat{x}_0}\right)^2$$

The phase advance is:

$$\Delta\mu = \mu_i - \mu_0$$

Without absolute calibration,

 β -function is more precise:

$$\Delta \mu = \int_{S0}^{Si} \frac{ds}{\beta(s)}$$

Dispersion and Chromaticity Measurement

Dispersion $D(s_i)$: Excitation of coherent betatron oscillations and change of momentum p by detuned rf-cavity:

- \rightarrow Position reading at one location: $x_i = D(s_i) \cdot \frac{\Delta p}{p}$
- \rightarrow Result from plot of x_i as a function of $\Delta p/p \Rightarrow$ slope is local dispersion $D(s_i)$.

Chromaticity ξ : Excitation of coherent betatron oscillations and momentum shift $\Delta p/p$ [%]

change of momentum p by detuned rf-cavity:

→ Tune measurement(kick-method, BTF, noise excitation):

$$\frac{\Delta Q}{Q} = \xi \cdot \frac{\Delta p}{p}$$

Plot of $\Delta Q/Q$ as a function of $\Delta p/p$

 \Rightarrow slope is dispersion ξ .

Measurement at LEP

Summary Pick-Ups for bunched Beams

The electric field is monitored for bunched beams using rf-technologies ('frequency domain'). Beside transfromers they are the most often used instruments!

Differentiated or proportional signal: rf-bandwidth \leftrightarrow beam parameters

Proton synchrotron: 1 to 100 MHz, mostly 1 M Ω \rightarrow proportional shape

LINAC, e-synchrotron: 0.1 to 3 GHz, 50 Ω \rightarrow differentiated shape

Important quantity: transfer impedance $Z_t(\omega, \beta)$.

Types of capacitive pick-ups:

Shoe-box (p-synch.), button (p-LINAC, e-LINAC and synch.)

Remark: Stripline BPM as traveling wave devices are frequently used

Position reading: difference signal of four pick-up plates (BPM):

- > Non-intercepting reading of center-of-mass \rightarrow online measurement and control slow reading \rightarrow closed orbit, fast bunch-by-bunch \rightarrow trajectory
- Excitation of *coherent betatron oscillations* and response measurement excitation by short kick, white noise or sine-wave (BTF)
 - \rightarrow tune q, chromaticity ξ , dispersion D etc.